diff --git a/modules/deeplearning/srcnn_l1b_l2.py b/modules/deeplearning/srcnn_l1b_l2.py index e203bada0d19533ca997c004b1648e980fdc6215..64493a074e230c5f0fe85c9b1ae4086e5d60b01f 100644 --- a/modules/deeplearning/srcnn_l1b_l2.py +++ b/modules/deeplearning/srcnn_l1b_l2.py @@ -59,8 +59,8 @@ label_param = 'cld_opd_dcomp' # label_param = 'cloud_probability' params = ['temp_11_0um_nom', 'temp_12_0um_nom', 'refl_0_65um_nom', label_param] -# data_params = ['temp_11_0um_nom'] -data_params = [] +data_params = ['temp_11_0um_nom'] +# data_params = [] label_idx = params.index(label_param) @@ -260,9 +260,10 @@ class SRCNN: tmp = tmp.copy() tmp = np.where(np.isnan(tmp), 0, tmp) # tmp = smooth_2d(tmp, sigma=1.0) - tmp = tmp[:, slc_y_2, slc_x_2] - tmp = resample_2d_linear(x_2, y_2, tmp, t, s) - tmp = tmp[:, y_k, x_k] + tmp = tmp[:, slc_y, slc_x] + # tmp = tmp[:, slc_y_2, slc_x_2] + # tmp = resample_2d_linear(x_2, y_2, tmp, t, s) + # tmp = tmp[:, y_k, x_k] tmp = normalize(tmp, param, mean_std_dct) if DO_ADD_NOISE: tmp = add_noise(tmp, noise_scale=NOISE_STDDEV)