diff --git a/modules/deeplearning/srcnn_l1b_l2.py b/modules/deeplearning/srcnn_l1b_l2.py index e855896833b3eb500005d1bf9e7f09042df1d4c0..2fb73c2b148978ba7c2136cba3a9d9fa3279df5e 100644 --- a/modules/deeplearning/srcnn_l1b_l2.py +++ b/modules/deeplearning/srcnn_l1b_l2.py @@ -690,11 +690,11 @@ class SRCNN: self.reset_test_metrics() - print(data.shape, data.min(), data.max()) pred = self.model([data], training=False) self.test_probs = pred pred = pred.numpy() - print('**: ', pred.shape, pred.min(), pred.max()) + if label_param != 'cloud_probability': + pred = denormalize(pred, label_param, mean_std_dct) return pred @@ -720,6 +720,7 @@ class SRCNN: return self.restore(ckpt_dir) def run_evaluate(self, data, ckpt_dir): + data = tf.convert_to_tensor(data, dtype=tf.float32) self.num_data_samples = 80000 self.build_model() self.build_training() @@ -773,32 +774,31 @@ def run_evaluate_static(in_file, out_file, ckpt_dir): # grd_b = normalize(grd_b, 'refl_0_65um_nom', mean_std_dct) grd_c = get_grid_values_all(h5f, label_param) - # grd_c = gaussian_filter(grd_c, sigma=1.0) grd_c = grd_c[y_0:y_0+sub_y, x_0:x_0+sub_x] - grd_c = grd_c.copy() - grd_c = np.where(np.isnan(grd_c), 0, grd_c) + hr_grd_c = grd_c.copy() hr_grd_c = hr_grd_c[y_128, x_128] + + grd_c = grd_c.copy() + grd_c = np.where(np.isnan(grd_c), 0, grd_c) grd_c = grd_c[slc_y_2, slc_x_2] grd_c = resample_2d_linear_one(x_2, y_2, grd_c, t, s) grd_c = grd_c[y_k, x_k] + if label_param != 'cloud_probability': grd_c = normalize(grd_c, label_param, mean_std_dct) # data = np.stack([grd_a, grd_b, grd_c], axis=2) - #data = np.stack([grd_a, grd_c], axis=2) + # data = np.stack([grd_a, grd_c], axis=2) data = np.stack([grd_c], axis=2) data = np.expand_dims(data, axis=0) - data = tf.convert_to_tensor(data, dtype=tf.float32) nn = SRCNN() out_sr = nn.run_evaluate(data, ckpt_dir) - if label_param != 'cloud_probability': - out_sr = denormalize(out_sr, label_param, mean_std_dct) if out_file is not None: np.save(out_file, [out_sr, hr_grd_c]) else: - return out_sr, None, None + return out_sr, hr_grd_c if __name__ == "__main__":