diff --git a/modules/deeplearning/srcnn_l1b_l2.py b/modules/deeplearning/srcnn_l1b_l2.py index 41ad975c309e90a7a1dd56a4ede83bc9c1c22c41..3da783c7ee025aa60801f4ff744aeb0232518f00 100644 --- a/modules/deeplearning/srcnn_l1b_l2.py +++ b/modules/deeplearning/srcnn_l1b_l2.py @@ -24,7 +24,7 @@ else: NumLogits = NumClasses BATCH_SIZE = 128 -NUM_EPOCHS = 60 +NUM_EPOCHS = 80 TRACK_MOVING_AVERAGE = False EARLY_STOP = True @@ -407,7 +407,7 @@ class SRCNN: activation = tf.nn.relu momentum = 0.99 - num_filters = 64 + num_filters = 128 input_2d = self.inputs[0] print('input: ', input_2d.shape) @@ -424,7 +424,7 @@ class SRCNN: conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_2', kernel_size=3, scale=scale) - #conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_3', kernel_size=3, scale=scale) + conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_3', kernel_size=3, scale=scale) #conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_4', kernel_size=3, scale=scale) @@ -449,7 +449,7 @@ class SRCNN: self.loss = tf.keras.losses.MeanSquaredError() # Regression # decayed_learning_rate = learning_rate * decay_rate ^ (global_step / decay_steps) - initial_learning_rate = 0.002 + initial_learning_rate = 0.005 decay_rate = 0.95 steps_per_epoch = int(self.num_data_samples/BATCH_SIZE) # one epoch decay_steps = int(steps_per_epoch)