diff --git a/modules/deeplearning/srcnn_l1b_l2.py b/modules/deeplearning/srcnn_l1b_l2.py index caf873de77cb6295336e1b94979fbc022d162b40..343502bdc0fb39691fd75c7e31c1cceea46ac333 100644 --- a/modules/deeplearning/srcnn_l1b_l2.py +++ b/modules/deeplearning/srcnn_l1b_l2.py @@ -831,13 +831,12 @@ def run_evaluate_static(in_file, out_file, ckpt_dir): grd_c = grd_c[slc_y_2, slc_x_2] grd_c = resample_2d_linear_one(x_2, y_2, grd_c, t, s) grd_c = grd_c[y_k, x_k] - if label_param != 'cloud_probability': grd_c = normalize(grd_c, label_param, mean_std_dct) # data = np.stack([grd_a, grd_b, grd_c], axis=2) - # data = np.stack([grd_a, grd_c], axis=2) - data = np.stack([grd_c], axis=2) + data = np.stack([grd_a, grd_c], axis=2) + # data = np.stack([grd_c], axis=2) data = np.expand_dims(data, axis=0) h5f.close() @@ -845,9 +844,9 @@ def run_evaluate_static(in_file, out_file, ckpt_dir): nn = SRCNN() out_sr = nn.run_evaluate(data, ckpt_dir) if out_file is not None: - np.save(out_file, (out_sr[0, :, :, 0], hr_grd_c)) + np.save(out_file, (out_sr[0, :, :, 0], hr_grd_a, hr_grd_c)) else: - return out_sr, hr_grd_c + return out_sr, hr_grd_a, hr_grd_c if __name__ == "__main__":