diff --git a/modules/deeplearning/cloud_opd_srcnn_abi.py b/modules/deeplearning/cloud_opd_srcnn_abi.py index 237d1040f9cd96c37b01240505c839a2a019da38..29761920c6ec4c48fd71fede21b0c1c722bd76a9 100644 --- a/modules/deeplearning/cloud_opd_srcnn_abi.py +++ b/modules/deeplearning/cloud_opd_srcnn_abi.py @@ -56,7 +56,7 @@ params = ['temp_11_0um_nom', 'refl_0_65um_nom', 'refl_submin_ch01', 'refl_submax params_i = ['temp_11_0um_nom', 'refl_0_65um_nom', 'temp_stddev3x3_ch31', 'refl_stddev3x3_ch01', label_param] data_params_half = ['temp_11_0um_nom', 'refl_0_65um_nom'] data_params_full = ['refl_0_65um_nom'] -sub_fields = ['refl_submin_ch01', 'refl_submax_ch01', 'refl_substddev_ch01'] +# sub_fields = ['refl_submin_ch01', 'refl_submax_ch01', 'refl_substddev_ch01'] sub_fields = ['temp_stddev3x3_ch31', 'refl_stddev3x3_ch01'] label_idx_i = params_i.index(label_param) @@ -207,7 +207,7 @@ class SRCNN: self.test_label_files = None # self.n_chans = len(data_params_half) + len(data_params_full) + 1 - self.n_chans = 6 + self.n_chans = 5 self.X_img = tf.keras.Input(shape=(None, None, self.n_chans)) @@ -272,7 +272,8 @@ class SRCNN: tmp = np.where(np.isnan(tmp), 0.0, tmp) tmp = tmp[:, self.slc_y_m, self.slc_x_m] tmp = self.upsample(tmp) - if param != 'refl_substddev_ch01': + # if param != 'refl_substddev_ch01': + if False: tmp = normalize(tmp, 'refl_0_65um_nom', mean_std_dct) else: tmp = np.where(np.isnan(tmp), 0.0, tmp)