diff --git a/modules/util/gfs_reader.py b/modules/util/gfs_reader.py new file mode 100644 index 0000000000000000000000000000000000000000..972ec182f5f414e757abed0b5baac4a5ce740ed4 --- /dev/null +++ b/modules/util/gfs_reader.py @@ -0,0 +1,226 @@ +import datetime +from datetime import timezone +import glob +import numpy as np +import xarray as xr +from util.util import value_to_index +#import cartopy +#from cartopy import * +from metpy import * +#import cartopy.crs as ccrs +import random + +gfs_directory = '/apollo/cloud/Ancil_Data/clavrx_ancil_data/dynamic/gfs/' +gfs_date_format = '%y%m%d' + +lon360 = True +lat_coords = np.linspace(-90, 90, 361) +lon_coords = np.linspace(0, 359.5, 720) + + +class MyGenericException(Exception): + def __init__(self, message): + self.message = message + + +def get_time_tuple_utc(timestamp): + dt_obj = datetime.datetime.fromtimestamp(timestamp, timezone.utc) + return dt_obj, dt_obj.timetuple() + + +def get_bounding_gfs_files(timestamp): + dt_obj, time_tup = get_time_tuple_utc(timestamp) + date_str = dt_obj.strftime(gfs_date_format) + dt_obj0 = datetime.datetime.strptime(date_str, gfs_date_format).replace(tzinfo=timezone.utc) + dt_obj1 = dt_obj0 + datetime.timedelta(days=1) + date_str_1 = dt_obj1.strftime(gfs_date_format) + + flist_0 = glob.glob(gfs_directory+'gfs.'+date_str+'??_F012.hdf') + flist_1 = glob.glob(gfs_directory+'gfs.'+date_str_1+'00_F012.hdf') + if (len(flist_0) == 0) or (len(flist_1) == 0): + return None, None, None, None + filelist = flist_0 + flist_1 + + ftimes = [] + for pname in filelist: # TODO: make better with regular expressions (someday) + fname = os.path.split(pname)[1] + toks = fname.split('.') + tstr = toks[1].split('_')[0] + dto = datetime.datetime.strptime(tstr, gfs_date_format+'%H').replace(tzinfo=timezone.utc) + ftimes.append(dto.timestamp()) + + tarr = np.array(ftimes) + sidxs = tarr.argsort() + + farr = np.array(filelist) + farr = farr[sidxs] + ftimes = tarr[sidxs] + + above = ftimes >= timestamp + if not above.any(): + return None, None, None, None + tR = ftimes[above].min() + + below = ftimes <= timestamp + if not below.any(): + return None, None, None, None + tL = ftimes[below].max() + + iL = np.searchsorted(ftimes, tL, 'left') + iR = iL + 1 + + fList = farr.tolist() + + return fList[iL], ftimes[iL], fList[iR], ftimes[iR] + + +def get_horz_layer(xr_dataset, fld_name, press, lon_lo, lon_hi, lat_lo, lat_hi): + plevs = xr_dataset['pressure levels'] + fld = xr_dataset[fld_name] + + if lon360: + if lon_lo < 0: + lon_lo += 360 + if lon_hi < 0: + lon_hi += 360 + + x_lo = value_to_index(lon_coords, lon_lo) + x_hi = value_to_index(lon_coords, lon_hi) + y_lo = value_to_index(lat_coords, lat_lo) + y_hi = value_to_index(lat_coords, lat_hi) + p_idx = value_to_index(plevs.values, press) + + sub_fld = fld[y_lo:y_hi, x_lo:x_hi, p_idx] + sub_fld = sub_fld.expand_dims('channel') + + sub_fld = sub_fld.assign_coords(channel=[fld_name], fakeDim2=lon_coords[x_lo:x_hi], fakeDim1=lat_coords[y_lo:y_hi]) + + return sub_fld + + +def get_horz_layer_s(xr_dataset, fld_names, press, lon_lo=None, lon_hi=None, lat_lo=None, lat_hi=None): + plevs = xr_dataset['pressure levels'] + + if lon360: + if lon_lo < 0: + lon_lo += 360 + if lon_hi < 0: + lon_hi += 360 + + x_lo = value_to_index(lon_coords, lon_lo) + x_hi = value_to_index(lon_coords, lon_hi) + y_lo = value_to_index(lat_coords, lat_lo) + y_hi = value_to_index(lat_coords, lat_hi) + p_idx = value_to_index(plevs.values, press) + + sub_fld_s = [] + for fld_name in fld_names: + fld = xr_dataset[fld_name] + sub_fld = fld[y_lo:y_hi, x_lo:x_hi, p_idx] + sub_fld_s.append(sub_fld) + + sub_fld = xr.concat(sub_fld_s, 'channel') + sub_fld = sub_fld.assign_coords(channel=fld_names, fakeDim2=lon_coords[x_lo:x_hi], fakeDim1=lat_coords[y_lo:y_hi]) + + return sub_fld + + +def get_vert_profile(xr_dataset, fld_name, lons, lats): + if lon360: # convert -180/+180 to 0,360 + lons = np.where(lons < 0, lons + 360, lons) + + plevs = xr_dataset['pressure levels'] + + fld = xr_dataset[fld_name] + fld = fld.assign_coords(fakeDim2=lon_coords, fakeDim1=lat_coords, fakeDim0=plevs) + + dim2 = xr.DataArray(lons, dims='k') + dim1 = xr.DataArray(lats, dims='k') + + intrp_fld = fld.interp(fakeDim1=dim1, fakeDim2=dim2, fakeDim0=plevs, method='linear') + + return intrp_fld + + +def get_vert_profile_s(xr_dataset, fld_name_s, lons, lats): + if lon360: # convert -180,+180 to 0,360 + lons = np.where(lons < 0, lons + 360, lons) + + plevs = xr_dataset['pressure levels'] + + fld_s = [] + for fld_name in fld_name_s: + fld = xr_dataset[fld_name] + fld = fld.assign_coords(fakeDim2=lon_coords, fakeDim1=lat_coords, fakeDim0=plevs) + fld_s.append(fld) + + fld = xr.concat(fld_s, 'fld_dim') + + dim2 = xr.DataArray(lons, dims='k') + dim1 = xr.DataArray(lats, dims='k') + + intrp_fld = fld.interp(fakeDim1=dim1, fakeDim2=dim2, fakeDim0=plevs, method='linear') + + return intrp_fld + + +def get_point(xr_dataset, fld_name, lons, lats): + if lon360: # convert -180/+180 to 0,360 + lons = np.where(lons < 0, lons + 360, lons) # convert -180,180 to 0,360 + + lat_coords = np.linspace(-90, 90, xr_dataset.fakeDim1.size) + lon_coords = np.linspace(0, 359.5, xr_dataset.fakeDim2.size) + + fld = xr_dataset[fld_name] + fld = fld.assign_coords(fakeDim2=lon_coords, fakeDim1=lat_coords) + + dim1 = xr.DataArray(lats, dims='k') + dim2 = xr.DataArray(lons, dims='k') + + intrp_fld = fld.interp(fakeDim1=dim1, fakeDim2=dim2, method='linear') + + return intrp_fld + + +def get_time_interpolated_vert_profile(ds_0, ds_1, time0, time1, fld_name, time, lons, lats): + + prof_0 = get_vert_profile(ds_0, fld_name, lons, lats) + prof_1 = get_vert_profile(ds_1, fld_name, lons, lats) + + prof = xr.concat([prof_0, prof_1], 'time') + prof = prof.assign_coords(time=[time0, time1]) + + intrp_prof = prof.interp(time=time, method='linear') + + intrp_prof = intrp_prof.values + + return intrp_prof + + +def get_time_interpolated_vert_profile_s(ds_0, ds_1, time0, time1, fld_name_s, time, lons, lats): + + prof_0 = get_vert_profile_s(ds_0, fld_name_s, lons, lats) + prof_1 = get_vert_profile_s(ds_1, fld_name_s, lons, lats) + + prof = xr.concat([prof_0, prof_1], 'time') + prof = prof.assign_coords(time=[time0, time1]) + + intrp_prof = prof.interp(time=time, method='linear') + + intrp_prof = intrp_prof.values + + return intrp_prof + + +def get_time_interpolated_point(ds_0, ds_1, time0, time1, fld_name, time, lons, lats): + vals_0 = get_point(ds_0, fld_name, lons, lats) + vals_1 = get_point(ds_1, fld_name, lons, lats) + + vals = xr.concat([vals_0, vals_1], 'time') + vals = vals.assign_coords(time=[time0, time1]) + + intrp_vals = vals.interp(time=time, method='linear') + + intrp_vals = intrp_vals.values + + return intrp_vals