From 3d1692f8f04dc9c5b34c3ab8189932436064fdd8 Mon Sep 17 00:00:00 2001 From: tomrink <rink@ssec.wisc.edu> Date: Fri, 7 May 2021 13:46:01 -0500 Subject: [PATCH] snapshot... --- modules/deeplearning/icing_cnn.py | 24 ++++++++++++++++-------- 1 file changed, 16 insertions(+), 8 deletions(-) diff --git a/modules/deeplearning/icing_cnn.py b/modules/deeplearning/icing_cnn.py index f771dd28..9128ae7e 100644 --- a/modules/deeplearning/icing_cnn.py +++ b/modules/deeplearning/icing_cnn.py @@ -13,18 +13,17 @@ from util.plot_cm import plot_confusion_matrix LOG_DEVICE_PLACEMENT = False -CACHE_DATA_IN_MEM = True +CACHE_DATA_IN_MEM = False PROC_BATCH_SIZE = 4096 PROC_BATCH_BUFFER_SIZE = 50000 -NumClasses = 3 +NumClasses = 2 NumLogits = 1 BATCH_SIZE = 256 -NUM_EPOCHS = 50 +NUM_EPOCHS = 200 TRACK_MOVING_AVERAGE = False - TRIPLET = False CONV3D = False @@ -187,7 +186,11 @@ class IcingIntensityNN: # Memory growth must be set before GPUs have been initialized print(e) - def get_in_mem_data_batch(self, idxs): + def get_in_mem_data_batch(self, idxs, is_training): + h5f = self.h5f_trn + if not is_training: + h5f = self.h5f_tst + key = frozenset(idxs) if CACHE_DATA_IN_MEM: @@ -201,14 +204,14 @@ class IcingIntensityNN: data = [] for param in train_params: - nda = self.h5f[param][nd_idxs, ] + nda = h5f[param][nd_idxs, ] nda = normalize(nda, param, mean_std_dct) data.append(nda) data = np.stack(data) data = data.astype(np.float32) data = np.transpose(data, axes=(1, 2, 3, 0)) - label = self.h5f['icing_intensity'][nd_idxs] + label = h5f['icing_intensity'][nd_idxs] label = label.astype(np.int32) label = np.where(label == -1, 0, label) @@ -256,7 +259,8 @@ class IcingIntensityNN: dataset = tf.data.Dataset.from_tensor_slices(indexes) dataset = dataset.batch(PROC_BATCH_SIZE) dataset = dataset.map(self.data_function, num_parallel_calls=8) - dataset = dataset.shuffle(PROC_BATCH_BUFFER_SIZE) + dataset = dataset.cache() + # dataset = dataset.shuffle(PROC_BATCH_BUFFER_SIZE) dataset = dataset.prefetch(buffer_size=1) self.train_dataset = dataset @@ -266,6 +270,7 @@ class IcingIntensityNN: dataset = tf.data.Dataset.from_tensor_slices(indexes) dataset = dataset.batch(PROC_BATCH_SIZE) dataset = dataset.map(self.data_function, num_parallel_calls=8) + dataset = dataset.cache() self.test_dataset = dataset def setup_pipeline(self, filename_trn, filename_tst, trn_idxs=None, tst_idxs=None, seed=None): @@ -621,6 +626,9 @@ class IcingIntensityNN: self.writer_train.close() self.writer_valid.close() + self.h5f_trn.close() + self.h5f_tst.close() + def build_model(self): flat = self.build_cnn() # flat_1d = self.build_1d_cnn() -- GitLab