diff --git a/modules/deeplearning/icing_cnn.py b/modules/deeplearning/icing_cnn.py index 26c797d68542cf2e7f584a7acfd3ff18ff03d3c0..2fe65274bb6fedcc9964f8e7357ec0f33a93d6bd 100644 --- a/modules/deeplearning/icing_cnn.py +++ b/modules/deeplearning/icing_cnn.py @@ -235,7 +235,7 @@ class IcingIntensityNN: dataset = tf.data.Dataset.from_tensor_slices(indexes) dataset = dataset.batch(PROC_BATCH_SIZE) dataset = dataset.map(self.data_function, num_parallel_calls=8) - dataset = dataset.shuffle(PROC_BATCH_BUFFER_SIZE) + # dataset = dataset.shuffle(PROC_BATCH_BUFFER_SIZE) dataset = dataset.prefetch(buffer_size=1) self.train_dataset = dataset @@ -247,13 +247,13 @@ class IcingIntensityNN: dataset = dataset.map(self.data_function, num_parallel_calls=8) self.test_dataset = dataset - def setup_pipeline(self, filename, trn_idxs=None, tst_idxs=None): + def setup_pipeline(self, filename, trn_idxs=None, tst_idxs=None, seed=None): self.filename = filename self.h5f = h5py.File(filename, 'r') if trn_idxs is None and tst_idxs is None: time = self.h5f['time'] num_obs = time.shape[0] - trn_idxs, tst_idxs = split_data(num_obs) + trn_idxs, tst_idxs = split_data(num_obs, seed=seed) self.num_data_samples = trn_idxs.shape[0] self.get_train_dataset(trn_idxs)