diff --git a/modules/deeplearning/cnn_cld_frac.py b/modules/deeplearning/cnn_cld_frac.py index fc1b56275b1a2f44a87a194aa6369832580dcbcf..3d98de98756272290d52c10bb35b60ef5f575e88 100644 --- a/modules/deeplearning/cnn_cld_frac.py +++ b/modules/deeplearning/cnn_cld_frac.py @@ -458,14 +458,13 @@ class CNN: if NOISE_TRAINING: conv = conv_b = tf.keras.layers.GaussianNoise(stddev=NOISE_STDDEV)(conv) - conv_b = build_residual_block_1x1(conv_b, num_filters, activation, 'Residual_Block_1') + conv = build_residual_block_1x1(conv, num_filters, activation, 'Residual_Block_1') - conv_b = build_residual_block_1x1(conv_b, num_filters, activation, 'Residual_Block_2') + conv = build_residual_block_1x1(conv, num_filters, activation, 'Residual_Block_2') - conv_b = build_residual_block_1x1(conv_b, num_filters, activation, 'Residual_Block_3') + conv = build_residual_block_1x1(conv, num_filters, activation, 'Residual_Block_3') # conv = conv + conv_b - conv = conv_b print(conv.shape) self.logits = tf.keras.layers.Conv2D(NumLogits, kernel_size=1, strides=1, padding=padding, name='regression')(conv)