From 3544a0df08ab048aed9c66b63e80bc760f550cf4 Mon Sep 17 00:00:00 2001 From: tomrink <rink@ssec.wisc.edu> Date: Mon, 26 Dec 2022 15:09:23 -0600 Subject: [PATCH] snapshot... --- modules/deeplearning/srcnn_l1b_l2.py | 12 ------------ 1 file changed, 12 deletions(-) diff --git a/modules/deeplearning/srcnn_l1b_l2.py b/modules/deeplearning/srcnn_l1b_l2.py index 49c0d7ad..9b89fc7e 100644 --- a/modules/deeplearning/srcnn_l1b_l2.py +++ b/modules/deeplearning/srcnn_l1b_l2.py @@ -514,11 +514,7 @@ class SRCNN: def test_step(self, mini_batch): inputs = [mini_batch[0]] labels = mini_batch[1] - in_nd = tf.make_ndarray(mini_batch[0]) - print('****: ', in_nd.shape, in_nd.min(), in_nd.max()) pred = self.model(inputs, training=False) - in_nd = tf.make_ndarray(pred) - print('****: ', in_nd.shape, in_nd.min(), in_nd.max()) t_loss = self.loss(labels, pred) self.test_loss(t_loss) @@ -780,27 +776,19 @@ def run_evaluate_static(in_file, out_file, ckpt_dir): # grd_c = gaussian_filter(grd_c, sigma=1.0) grd_c = grd_c[y_0:y_0+sub_y, x_0:x_0+sub_x] grd_c = grd_c.copy() - print(grd_c.shape) grd_c = np.where(np.isnan(grd_c), 0, grd_c) hr_grd_c = grd_c.copy() hr_grd_c = hr_grd_c[y_128, x_128] - print(hr_grd_c.shape) grd_c = grd_c[slc_y_2, slc_x_2] - print(grd_c.shape) grd_c = resample_2d_linear_one(x_2, y_2, grd_c, t, s) - print(grd_c.shape) grd_c = grd_c[y_k, x_k] - print(grd_c.shape) if label_param != 'cloud_probability': grd_c = normalize(grd_c, label_param, mean_std_dct) - print(grd_c.shape) # data = np.stack([grd_a, grd_b, grd_c], axis=2) #data = np.stack([grd_a, grd_c], axis=2) data = np.stack([grd_c], axis=2) - print(data.shape) data = np.expand_dims(data, axis=0) - print(data.shape) nn = SRCNN() out_sr = nn.run_evaluate(data, ckpt_dir) -- GitLab