diff --git a/modules/deeplearning/unet_l1b_l2.py b/modules/deeplearning/unet_l1b_l2.py index 00948a9829b6c2c1b6ea25a6a40ead3bae3b5e07..c15cc582f715b8e9d79172e48614b22880d91024 100644 --- a/modules/deeplearning/unet_l1b_l2.py +++ b/modules/deeplearning/unet_l1b_l2.py @@ -331,34 +331,6 @@ class UNET: dataset = dataset.map(self.data_function_evaluate, num_parallel_calls=8) self.eval_dataset = dataset - # def setup_pipeline(self, data_nda, label_nda, perc=0.20): - # - # num_samples = data_nda.shape[0] - # num_test = int(num_samples * perc) - # self.num_data_samples = num_samples - num_test - # num_train = self.num_data_samples - # - # self.train_data_nda = data_nda[0:num_train] - # self.train_label_nda = label_nda[0:num_train] - # self.test_data_nda = data_nda[num_train:] - # self.test_label_nda = label_nda[num_train:] - # - # trn_idxs = np.arange(self.train_data_nda.shape[0]) - # tst_idxs = np.arange(self.test_data_nda.shape[0]) - # - # np.random.shuffle(tst_idxs) - # - # self.get_train_dataset(trn_idxs) - # self.get_test_dataset(tst_idxs) - # - # print('datetime: ', now) - # print('training and test data: ') - # print('---------------------------') - # print('num train samples: ', self.num_data_samples) - # print('BATCH SIZE: ', BATCH_SIZE) - # print('num test samples: ', tst_idxs.shape[0]) - # print('setup_pipeline: Done') - def setup_pipeline(self, train_data_files, train_label_files, test_data_files, test_label_files, num_train_samples): self.train_data_files = train_data_files