diff --git a/modules/deeplearning/cloud_opd_fcn_abi.py b/modules/deeplearning/cloud_opd_fcn_abi.py index 8af83c3ba1baa45b872bb4cb561987c6dd874583..61672a37ce3f402982fc26cf2a8dd7ba25ccd1e6 100644 --- a/modules/deeplearning/cloud_opd_fcn_abi.py +++ b/modules/deeplearning/cloud_opd_fcn_abi.py @@ -71,8 +71,8 @@ label_param = 'cld_opd_dcomp' params = ['temp_11_0um_nom', 'refl_0_65um_nom', 'refl_submin_ch01', 'refl_submax_ch01', 'refl_substddev_ch01', 'cloud_probability', label_param] params_i = ['temp_11_0um_nom', 'refl_0_65um_nom', 'cloud_probability', label_param] -# data_params_half = ['temp_11_0um_nom'] -data_params_half = ['temp_11_0um_nom', 'refl_0_65um_nom'] +data_params_half = ['temp_11_0um_nom'] +# data_params_half = ['temp_11_0um_nom', 'refl_0_65um_nom'] sub_fields = ['refl_submin_ch01', 'refl_submax_ch01', 'refl_substddev_ch01'] data_params_full = ['refl_0_65um_nom'] @@ -289,7 +289,7 @@ class SRCNN: self.test_label_files = None # self.n_chans = len(data_params_half) + len(data_params_full) + 1 - self.n_chans = 5 + self.n_chans = 6 self.X_img = tf.keras.Input(shape=(None, None, self.n_chans + 1)) @@ -319,12 +319,13 @@ class SRCNN: input_label = np.concatenate(label_s) data_norm = [] - # for param in data_params_half: - # idx = params.index(param) - # tmp = input_data[:, idx, :, :] - # tmp = tmp[:, slc_y, slc_x] - # tmp = normalize(tmp, param, mean_std_dct) - # data_norm.append(tmp) + for param in data_params_half: + idx = params.index(param) + tmp = input_data[:, idx, :, :] + tmp = tmp[:, slc_y, slc_x] + # tmp = normalize(tmp, param, mean_std_dct) + tmp = scale(tmp, param, mean_std_dct) + data_norm.append(tmp) tmp = input_label[:, params_i.index('cloud_probability'), :, :] cld_prob = tmp.copy() @@ -931,12 +932,13 @@ def run_restore_static(directory, ckpt_dir, out_file=None): np.save(out_file, [labels[:, :, :, 0], preds[:, :, :, 0], - inputs[:, 1:y_hi, 1:x_hi, 0], - descale(inputs[:, 1:y_hi, 1:x_hi, 1], 'refl_0_65um_nom', mean_std_dct), + descale(inputs[:, 1:y_hi, 1:x_hi, 0], 'temp_11_0um_nom', mean_std_dct), + inputs[:, 1:y_hi, 1:x_hi, 1], descale(inputs[:, 1:y_hi, 1:x_hi, 2], 'refl_0_65um_nom', mean_std_dct), - inputs[:, 1:y_hi, 1:x_hi, 3], - descale(inputs[:, 1:y_hi, 1:x_hi, 4], label_param, mean_std_dct), - inputs[:, 1:y_hi, 1:x_hi, 5]]) + descale(inputs[:, 1:y_hi, 1:x_hi, 3], 'refl_0_65um_nom', mean_std_dct), + inputs[:, 1:y_hi, 1:x_hi, 4], + descale(inputs[:, 1:y_hi, 1:x_hi, 5], label_param, mean_std_dct), + inputs[:, 1:y_hi, 1:x_hi, 6]]) def run_evaluate_static(in_file, out_file, ckpt_dir):