diff --git a/modules/contrail/util.py b/modules/contrail/util.py index eab33f3dffb5bf3096786bacdd97df17cf9d76fb..c898e77954efb24e3cd864018f0cef418bdab296 100644 --- a/modules/contrail/util.py +++ b/modules/contrail/util.py @@ -116,15 +116,15 @@ def extract(mask_image, image_ts, clavrx_path): # tmp = horz_shear_3d.sel(Pressure=press, method='nearest') # tmp = tmp.sel(Longitude=lon, Latitude=lat, method='nearest') - levels_dict[press_bins[key]].append((press_level, press, lat, lon, temp_value, rh_value, horz_shear_value, static_value, horz_wind_spd_value, vert_shear_value)) + levels_dict[press_level].append((press, lat, lon, temp_value, rh_value, horz_shear_value, static_value, horz_wind_spd_value, vert_shear_value)) all_list.append((press_level, press, lat, lon, temp_value, rh_value, horz_shear_value, static_value, horz_wind_spd_value, vert_shear_value)) # Create pandas DataFrame for each list of tuples in voxel_dict voxel_dict_df = {} for k, v in levels_dict.items(): - print(k, len(v)) + print('pressure level, number of contrail points: ', k, len(v)) df = pd.DataFrame(v, - columns=["pressure_level", "pressure", "lat", "lon", "temperature", "relative_humidity", + columns=["pressure", "lat", "lon", "temperature", "relative_humidity", "horz_shear_deform", "static_stability", "horz_wind_speed", "vert_wind_shear"]) voxel_dict_df[k] = df