From 2cc9d96964ed3a813c632a83b49caaeee3ee32b9 Mon Sep 17 00:00:00 2001 From: tomrink <rink@ssec.wisc.edu> Date: Thu, 20 Jul 2023 14:10:14 -0500 Subject: [PATCH] snapshot... --- modules/deeplearning/cloud_opd_srcnn_abi.py | 16 +++++++++------- 1 file changed, 9 insertions(+), 7 deletions(-) diff --git a/modules/deeplearning/cloud_opd_srcnn_abi.py b/modules/deeplearning/cloud_opd_srcnn_abi.py index baf49e8c..ed2ee135 100644 --- a/modules/deeplearning/cloud_opd_srcnn_abi.py +++ b/modules/deeplearning/cloud_opd_srcnn_abi.py @@ -31,7 +31,7 @@ NOISE_TRAINING = False NOISE_STDDEV = 0.01 DO_AUGMENT = True -DO_SMOOTH = False +DO_SMOOTH = True SIGMA = 1.0 DO_ZERO_OUT = False @@ -268,7 +268,8 @@ class SRCNN: tmp = np.where(np.isnan(tmp), 0.0, tmp) tmp = tmp[:, self.slc_y_m, self.slc_x_m] tmp = self.upsample(tmp) - if DO_SMOOTH: + # if DO_SMOOTH: + if False: tmp = smooth_2d(tmp) tmp = normalize(tmp, param, mean_std_dct) data_norm.append(tmp) @@ -456,17 +457,18 @@ class SRCNN: conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_2', kernel_size=KERNEL_SIZE, scale=scale) - conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_3', kernel_size=KERNEL_SIZE, scale=scale) + # conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_3', kernel_size=KERNEL_SIZE, scale=scale) - conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_4', kernel_size=KERNEL_SIZE, scale=scale) + # conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_4', kernel_size=KERNEL_SIZE, scale=scale) - conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_5', kernel_size=KERNEL_SIZE, scale=scale) + # conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_5', kernel_size=KERNEL_SIZE, scale=scale) - conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_6', kernel_size=KERNEL_SIZE, scale=scale) + # conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_6', kernel_size=KERNEL_SIZE, scale=scale) conv_b = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, activation=activation, kernel_initializer='he_uniform', padding=padding)(conv_b) - conv = conv + conv_b + # conv = conv + conv_b + conv = conv_b print(conv.shape) # This is effectively a Dense layer -- GitLab