From 2af4fb2e05073f00b22777f7518bc2f3324ec9cd Mon Sep 17 00:00:00 2001 From: tomrink <rink@ssec.wisc.edu> Date: Sat, 11 Feb 2023 09:39:15 -0600 Subject: [PATCH] snapshot... --- modules/deeplearning/cnn_cld_frac.py | 13 +++++++------ 1 file changed, 7 insertions(+), 6 deletions(-) diff --git a/modules/deeplearning/cnn_cld_frac.py b/modules/deeplearning/cnn_cld_frac.py index 6c36a4d1..951d8c0b 100644 --- a/modules/deeplearning/cnn_cld_frac.py +++ b/modules/deeplearning/cnn_cld_frac.py @@ -763,11 +763,11 @@ class SRCNN: preds = np.concatenate(self.test_preds) print(labels.shape, preds.shape) - if label_param != 'cloud_probability': - labels_denorm = denormalize(labels, label_param, mean_std_dct) - preds_denorm = denormalize(preds, label_param, mean_std_dct) + # if label_param != 'cloud_probability': + # labels_denorm = denormalize(labels, label_param, mean_std_dct) + # preds_denorm = denormalize(preds, label_param, mean_std_dct) - return labels_denorm, preds_denorm + return labels, preds def do_evaluate(self, data, ckpt_dir): @@ -815,9 +815,10 @@ class SRCNN: def run_restore_static(directory, ckpt_dir, out_file=None): nn = SRCNN() - labels_denorm, preds_denorm = nn.run_restore(directory, ckpt_dir) + labels, preds = nn.run_restore(directory, ckpt_dir) if out_file is not None: - np.save(out_file, [np.squeeze(labels_denorm), preds_denorm.argmax(axis=3)]) + np.save(out_file, + [np.squeeze(labels), preds.argmax(axis=3), preds[:, :, :, 0], preds[:, :, :, 1], preds[:, :, :, 2]]) def run_evaluate_static(in_file, out_file, ckpt_dir): -- GitLab