diff --git a/modules/deeplearning/cnn_cld_frac.py b/modules/deeplearning/cnn_cld_frac.py index 05bcae257acd8845f23e55f6194d08e57566e6b6..5c885ee4dfbb2d466240af3b56ce3efa1555ca96 100644 --- a/modules/deeplearning/cnn_cld_frac.py +++ b/modules/deeplearning/cnn_cld_frac.py @@ -226,14 +226,34 @@ def get_grid_cell_mean(grd_k): # return s_t +# def get_label_data(grd_k): +# grd_k = np.where(np.isnan(grd_k), 0, grd_k) +# cat_0 = np.logical_and(grd_k >= 0.0, grd_k < 0.15) +# cat_1 = np.logical_and(grd_k >= 0.15, grd_k < 0.85) +# cat_2 = np.logical_and(grd_k >= 0.85, grd_k <= 1.0) +# grd_k[cat_0] = -1 +# grd_k[cat_1] = 0 +# grd_k[cat_2] = 1 +# +# a = grd_k[:, 0::2, 0::2] +# b = grd_k[:, 1::2, 0::2] +# c = grd_k[:, 0::2, 1::2] +# d = grd_k[:, 1::2, 1::2] +# s = a + b + c + d +# +# cat_0 = s <= -3 +# cat_1 = np.logical_and(s > -3, s < 2) +# cat_2 = s >= 2 +# s[cat_0] = 0 +# s[cat_1] = 1 +# s[cat_2] = 2 +# +# return s + + def get_label_data(grd_k): grd_k = np.where(np.isnan(grd_k), 0, grd_k) - cat_0 = np.logical_and(grd_k >= 0.0, grd_k < 0.15) - cat_1 = np.logical_and(grd_k >= 0.15, grd_k < 0.85) - cat_2 = np.logical_and(grd_k >= 0.85, grd_k <= 1.0) - grd_k[cat_0] = -1 - grd_k[cat_1] = 0 - grd_k[cat_2] = 1 + grd_k = np.where(grd_k < 0.50, 0, 1) a = grd_k[:, 0::2, 0::2] b = grd_k[:, 1::2, 0::2] @@ -241,9 +261,9 @@ def get_label_data(grd_k): d = grd_k[:, 1::2, 1::2] s = a + b + c + d - cat_0 = s <= -3 - cat_1 = np.logical_and(s > -3, s < 2) - cat_2 = s >= 2 + cat_0 = (s == 0) + cat_1 = np.logical_and(s > 0, s < 4) + cat_2 = (s == 4) s[cat_0] = 0 s[cat_1] = 1 s[cat_2] = 2