diff --git a/modules/deeplearning/cloud_opd_srcnn_viirs.py b/modules/deeplearning/cloud_opd_srcnn_viirs.py index 55344d85b80311f92ab2cfd597e3d711487e9544..220f09a95cc711d9803015e672272b1ae17ef112 100644 --- a/modules/deeplearning/cloud_opd_srcnn_viirs.py +++ b/modules/deeplearning/cloud_opd_srcnn_viirs.py @@ -291,8 +291,8 @@ class SRCNN: # ----------------------------------------------------- # ----------------------------------------------------- label = input_label[:, label_idx_i, :, :] - # label = normalize(label, label_param, mean_std_dct) - label = scale(label, label_param, mean_std_dct) + label = normalize(label, label_param, mean_std_dct) + # label = scale(label, label_param, mean_std_dct) label = label[:, self.y_128, self.x_128] label = np.where(np.isnan(label), 0, label) @@ -620,10 +620,10 @@ class SRCNN: preds = np.concatenate(self.test_preds) print(labels.shape, preds.shape) - # labels_denorm = denormalize(labels, label_param, mean_std_dct) - # preds_denorm = denormalize(preds, label_param, mean_std_dct) - labels_denorm = descale(labels, label_param, mean_std_dct) - preds_denorm = descale(preds, label_param, mean_std_dct) + labels_denorm = denormalize(labels, label_param, mean_std_dct) + preds_denorm = denormalize(preds, label_param, mean_std_dct) + # labels_denorm = descale(labels, label_param, mean_std_dct) + # preds_denorm = descale(preds, label_param, mean_std_dct) print(preds_denorm.min(), preds_denorm.max()) return labels_denorm, preds_denorm @@ -736,8 +736,8 @@ def run_evaluate_static(in_file, out_file, ckpt_dir): h5f.close() cld_opd_sres = nn.run_evaluate(data, ckpt_dir) - # cld_opd_sres = denormalize(cld_opd_sres, label_param, mean_std_dct) - cld_opd_sres = descale(cld_opd_sres, label_param, mean_std_dct) + cld_opd_sres = denormalize(cld_opd_sres, label_param, mean_std_dct) + # cld_opd_sres = descale(cld_opd_sres, label_param, mean_std_dct) _, ylen, xlen, _ = cld_opd_sres.shape cld_opd_sres_out = np.zeros((LEN_Y, LEN_X), dtype=np.float32)