diff --git a/modules/deeplearning/esrgan_exp.py b/modules/deeplearning/esrgan_exp.py index 97c722e69b5703546ceead602fa2c051ccd81783..4d0380bf3cc3525756b11b3c8430e06481ffb0d5 100644 --- a/modules/deeplearning/esrgan_exp.py +++ b/modules/deeplearning/esrgan_exp.py @@ -12,19 +12,18 @@ from util.setup import home_dir target_param = 'cld_opd_dcomp' # SAVED_MODEL_PATH = "https://tfhub.dev/captain-pool/esrgan-tf2/1" -# SAVED_MODEL_PATH = '/Users/tomrink/Downloads/esrgan-tf2_1' -SAVED_MODEL_PATH = home_dir+'/esrgan-tf2_1' +SAVED_MODEL_PATH = home_dir + '/esrgan-tf2_1' model = hub.load(SAVED_MODEL_PATH) -def get_image(in_file): +def get_image_from_file(in_file): h5f = h5py.File(in_file, 'r') # s_x = slice(2622, 3134) # s_y = slice(2622, 3134) - s_x = slice(2238, 3518) - s_y = slice(2238, 3518) + s_x = slice(2110, 3646) + s_y = slice(2110, 3646) # s_x = slice(1854, 3902) # s_y = slice(1854, 3902) @@ -51,6 +50,24 @@ def get_image(in_file): return data +def get_image(data): + shape = data.shape + data = data.flatten() + + lo = 0.0 + hi = 160.0 + + data -= lo + data /= (hi - lo) + + not_valid = np.isnan(data) + data[not_valid] = 0 + + data = np.reshape(data, shape) + + return data + + def preprocess_image(hr_image): """ Loads image from path and preprocesses to make it model ready Args: @@ -79,7 +96,8 @@ def preprocess_image(hr_image): def run(in_file, out_file): # model = hub.load(SAVED_MODEL_PATH) t0 = time.time() - hr_image = get_image(in_file) + hr_image = get_image_from_file(in_file) + # hr_image = get_image(in_file) hr_image = preprocess_image(hr_image) t1 = time.time() print('processing time: ', (t1-t0)) @@ -93,4 +111,4 @@ def run(in_file, out_file): if out_file is not None: np.save(out_file, fake_image) else: - return fake_image + return fake_image, hr_image