diff --git a/modules/deeplearning/icing_cnn.py b/modules/deeplearning/icing_cnn.py index df10aa0522f97b0ca387a64193fcb4fde1a3b4a6..86e4dea027c6e33439fee3e6c26943f561ca9e28 100644 --- a/modules/deeplearning/icing_cnn.py +++ b/modules/deeplearning/icing_cnn.py @@ -633,17 +633,6 @@ class IcingIntensityNN: for mini_batch_test in tst_ds: self.test_step(mini_batch_test) - # recall = self.test_recall.result() - # precsn = self.test_precision.result() - # f1 = 2 * (precsn * recall) / (precsn + recall) - # - # tn = self.test_true_neg.result() - # tp = self.test_true_pos.result() - # fn = self.test_false_neg.result() - # fp = self.test_false_pos.result() - # - # mcc = ((tp * tn) - (fp * fn)) / np.sqrt((tp + fp) * (tp + fn) * (tn + fp) * (tn + fn)) - f1, mcc = self.get_metrics() with self.writer_valid.as_default(): @@ -677,16 +666,6 @@ class IcingIntensityNN: for mini_batch in ds: self.test_step(mini_batch) - # recall = self.test_recall.result().numpy() - # precsn = self.test_precision.result().numpy() - # f1 = 2 * (precsn * recall) / (precsn + recall) - # - # tn = self.test_true_neg.result().numpy() - # tp = self.test_true_pos.result().numpy() - # fn = self.test_false_neg.result().numpy() - # fp = self.test_false_pos.result().numpy() - # - # mcc = ((tp*tn)-(fp*fn))/np.sqrt((tp+fp)*(tp+fn)*(tn+fp)*(tn+fn)) f1, mcc = self.get_metrics() print('loss, acc, recall, precision, auc, f1, mcc: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy(),