From 267e930b53b936137f9e0baef163dc0fe3572218 Mon Sep 17 00:00:00 2001 From: tomrink <rink@ssec.wisc.edu> Date: Sun, 6 Nov 2022 10:18:17 -0600 Subject: [PATCH] snapshot... --- modules/deeplearning/cnn_cld_frac.py | 10 +++++++--- 1 file changed, 7 insertions(+), 3 deletions(-) diff --git a/modules/deeplearning/cnn_cld_frac.py b/modules/deeplearning/cnn_cld_frac.py index 312f42e3..bcfb8505 100644 --- a/modules/deeplearning/cnn_cld_frac.py +++ b/modules/deeplearning/cnn_cld_frac.py @@ -235,7 +235,7 @@ class CNN: self.test_data_nda = None self.test_label_nda = None - self.n_chans = len(data_params) + 1 + self.n_chans = len(data_params) + 2 self.X_img = tf.keras.Input(shape=(None, None, self.n_chans)) # self.X_img = tf.keras.Input(shape=(36, 36, self.n_chans)) @@ -282,7 +282,7 @@ class CNN: # -------- tmp = input_data[:, label_idx, y_128, x_128] tmp = np.where(np.isnan(tmp), 0, tmp) # shouldn't need this - # data_norm.append(tmp) + data_norm.append(tmp) # --------- data = np.stack(data_norm, axis=3) data = data.astype(np.float32) @@ -448,7 +448,11 @@ class CNN: conv = input_2d print('input: ', conv.shape) - conv = conv_b = tf.keras.layers.Conv2D(num_filters, kernel_size=2, strides=2, kernel_initializer='he_uniform', activation=activation, padding='SAME')(input_2d) + conv = conv_b = tf.keras.layers.Conv2D(num_filters, kernel_size=2, strides=1, kernel_initializer='he_uniform', activation=activation, padding='SAME')(input_2d) + + conv = tf.keras.layers.Conv2D(num_filters, kernel_size=2, strides=1, kernel_initializer='he_uniform', activation=activation, padding='SAME')(conv) + + conv = tf.keras.layers.Conv2D(num_filters, kernel_size=2, strides=2, kernel_initializer='he_uniform', activation=activation, padding='SAME')(conv) print(conv.shape) if NOISE_TRAINING: -- GitLab