From 265f47432e80dd0618eb298a95cb49148d92c421 Mon Sep 17 00:00:00 2001 From: tomrink <rink@ssec.wisc.edu> Date: Mon, 29 Apr 2024 16:20:36 -0500 Subject: [PATCH] snapshot... --- modules/machine_learning/classification.py | 5 +++-- 1 file changed, 3 insertions(+), 2 deletions(-) diff --git a/modules/machine_learning/classification.py b/modules/machine_learning/classification.py index 87de1486..506db5e3 100644 --- a/modules/machine_learning/classification.py +++ b/modules/machine_learning/classification.py @@ -197,8 +197,8 @@ def k_nearest_neighbors_all(x, y, k_s=10): plt.show() -def decision_tree(x, y, criterion='entropy', max_depth=4): - x_train, x_test, y_train, y_test = train_test_split( x, y, test_size=0.2, random_state=4) +def decision_tree(x_train, y_train, x_test, y_test, criterion='entropy', max_depth=4): + # x_train, x_test, y_train, y_test = train_test_split( x, y, test_size=0.2, random_state=4) print('Train set:', x_train.shape, y_train.shape) print('Test set:', x_test.shape, y_test.shape) @@ -211,6 +211,7 @@ def decision_tree(x, y, criterion='entropy', max_depth=4): yhat = DT.predict(x_test) yhat_prob = DT.predict_proba(x_test) + print(confusion_matrix(y_test, yhat, labels=[1, 0])) print('Accuracy: ', "{:.4f}".format(accuracy_score(y_test, yhat))) print('Jaccard Idx: ', "{:.4f}".format(jaccard_score(y_test, yhat))) print('Precision: ', "{:.4f}".format(precision_score(y_test, yhat))) -- GitLab