diff --git a/modules/deeplearning/icing_fcn.py b/modules/deeplearning/icing_fcn.py index b72ce4b051ae23168dacc0b48518b970cf657753..112c5629583ab3e423f9dc80dab586c4fc8dda38 100644 --- a/modules/deeplearning/icing_fcn.py +++ b/modules/deeplearning/icing_fcn.py @@ -2,7 +2,7 @@ import tensorflow as tf from util.setup import logdir, modeldir, cachepath, now, ancillary_path, home_dir from util.util import EarlyStop, normalize from util.geos_nav import get_navigation -from util.augment import augment_image_3arg +from util.augment import augment_icing import os, datetime import numpy as np @@ -323,27 +323,6 @@ class IcingIntensityFCN: label = np.where(np.invert(np.logical_or(label == 0, label == 1)), 2, label) label = label.reshape((label.shape[0], 1)) - # if is_training and DO_AUGMENT: - # data_ud = np.flip(data, axis=1) - # data_alt_ud = np.copy(data_alt) - # label_ud = np.copy(label) - # - # data_lr = np.flip(data, axis=2) - # data_alt_lr = np.copy(data_alt) - # label_lr = np.copy(label) - # - # data_r1 = np.rot90(data, k=1, axes=(1, 2)) - # data_alt_r1 = np.copy(data_alt) - # label_r1 = np.copy(label) - # - # data_r2 = np.rot90(data, k=1, axes=(1, 2)) - # data_alt_r2 = np.copy(data_alt) - # label_r2 = np.copy(label) - # - # data = np.concatenate([data, data_ud, data_lr, data_r1, data_r2]) - # data_alt = np.concatenate([data_alt, data_alt_ud, data_alt_lr, data_alt_r1, data_alt_r2]) - # label = np.concatenate([label, label_ud, label_lr, label_r1, label_r2]) - return data, data_alt, label def get_parameter_data(self, param, nd_idxs, is_training): @@ -469,7 +448,7 @@ class IcingIntensityFCN: dataset = dataset.cache() dataset = dataset.shuffle(PROC_BATCH_BUFFER_SIZE, reshuffle_each_iteration=True) if DO_AUGMENT: - dataset = dataset.map(augment_image_3arg(), num_parallel_calls=8) + dataset = dataset.map(augment_icing(), num_parallel_calls=8) dataset = dataset.prefetch(buffer_size=1) self.train_dataset = dataset