diff --git a/modules/deeplearning/srcnn_l1b_l2.py b/modules/deeplearning/srcnn_l1b_l2.py index f31fcd047ccd12459a60a2dcda1afb83f2ffdeb9..7ce11de3675dbffffca52b80e51f023d4c9c6566 100644 --- a/modules/deeplearning/srcnn_l1b_l2.py +++ b/modules/deeplearning/srcnn_l1b_l2.py @@ -1,7 +1,7 @@ import glob import tensorflow as tf from util.setup import logdir, modeldir, cachepath, now, ancillary_path -from util.util import EarlyStop, normalize, denormalize, resample, resample_one, get_grid_values_all +from util.util import EarlyStop, normalize, denormalize, resample, resample_2d_linear, resample_one, get_grid_values_all import os, datetime import numpy as np import pickle @@ -47,14 +47,16 @@ f.close() mean_std_dct.update(mean_std_dct_l1b) mean_std_dct.update(mean_std_dct_l2) -params = ['temp_11_0um_nom', 'temp_12_0um_nom', 'refl_0_65um_nom', 'cloud_fraction'] -data_params = ['temp_11_0um_nom', 'temp_12_0um_nom', 'refl_0_65um_nom'] +#params = ['temp_11_0um_nom', 'temp_12_0um_nom', 'refl_0_65um_nom', 'cloud_fraction'] +#data_params = ['temp_11_0um_nom', 'temp_12_0um_nom', 'refl_0_65um_nom'] +params = ['temp_11_0um_nom', 'temp_12_0um_nom', 'cloud_fraction'] +data_params = ['temp_11_0um_nom'] label_params = ['cloud_fraction'] DO_ZERO_OUT = False -label_idx = 3 +label_idx = 2 label_param = params[label_idx] print('data_params: ', data_params) print('label_params: ', label_params) @@ -214,12 +216,13 @@ class SRCNN: for param in data_params: idx = params.index(param) tmp = input_data[:, idx, 3:131:2, 3:131:2] - tmp = resample(y_64, x_64, tmp, s, t) + # tmp = resample(y_64, x_64, tmp, s, t) + tmp = resample_2d_linear(y_64, x_64, tmp, s, t) tmp = normalize(tmp, param, mean_std_dct, add_noise=add_noise, noise_scale=noise_scale) data_norm.append(tmp) # -------- - tmp = input_data[:, 2, 3:131, 3:131] - tmp = normalize(tmp, 'refl_0_65um_nom', mean_std_dct) + tmp = input_data[:, 0, 3:131, 3:131] + tmp = normalize(tmp, 'temp_11_0um_nom', mean_std_dct) data_norm.append(tmp) # --------- data = np.stack(data_norm, axis=3)