diff --git a/modules/deeplearning/cloud_fraction_fcn_abi.py b/modules/deeplearning/cloud_fraction_fcn_abi.py index 8728acfc922be743ff0f92723e12267724de8880..9046bd584ffcaf3aeab6798da1c033665239c6f0 100644 --- a/modules/deeplearning/cloud_fraction_fcn_abi.py +++ b/modules/deeplearning/cloud_fraction_fcn_abi.py @@ -73,7 +73,7 @@ print('data_params_full: ', data_params_full) print('label_param: ', label_param) KERNEL_SIZE = 3 -X_LEN = Y_LEN = 64 +X_LEN = Y_LEN = 128 if KERNEL_SIZE == 3: slc_x = slice(0, int(X_LEN/4) + 2) @@ -911,13 +911,14 @@ def run_restore_static(directory, ckpt_dir, out_file=None): nn = SRCNN() labels, preds, inputs = nn.run_restore(directory, ckpt_dir) if out_file is not None: + y_hi, x_hi = (Y_LEN // 4) + 1, (X_LEN // 4) + 1 np.save(out_file, [np.squeeze(labels), preds.argmax(axis=3), - denormalize(inputs[:, 1:17, 1:17, 0], 'temp_11_0um_nom', mean_std_dct), - denormalize(inputs[:, 1:17, 1:17, 1], 'refl_0_65um_nom', mean_std_dct), - denormalize(inputs[:, 1:17, 1:17, 2], 'refl_0_65um_nom', mean_std_dct), - inputs[:, 1:17, 1:17, 3], - inputs[:, 1:17, 1:17, 4]]) + denormalize(inputs[:, 1:y_hi, 1:x_hi, 0], 'temp_11_0um_nom', mean_std_dct), + denormalize(inputs[:, 1:y_hi, 1:x_hi, 1], 'refl_0_65um_nom', mean_std_dct), + denormalize(inputs[:, 1:y_hi, 1:x_hi, 2], 'refl_0_65um_nom', mean_std_dct), + inputs[:, 1:y_hi, 1:x_hi, 3], + inputs[:, 1:y_hi, 1:x_hi, 4]]) def run_evaluate_static(in_file, out_file, ckpt_dir):