diff --git a/modules/deeplearning/srcnn_l1b_l2.py b/modules/deeplearning/srcnn_l1b_l2.py index 899f68dc9a610d5a0d91d121571fc9454ffbbfee..8a43aea38b2eae0be74b8c18d9759ce7330db27d 100644 --- a/modules/deeplearning/srcnn_l1b_l2.py +++ b/modules/deeplearning/srcnn_l1b_l2.py @@ -230,7 +230,8 @@ class SRCNN: tmp = resample_2d_linear(x_64, y_64, tmp, t, s) data_norm.append(tmp) # -------- - idx = params.index('refl_0_65um_nom') + param = 'refl_0_65um_nom' + idx = params.index(param) tmp = input_data[:, idx, 3:131:2, 3:131:2] # tmp = input_data[:, idx, 3:131, 3:131] tmp = normalize(tmp, param, mean_std_dct, add_noise=add_noise, noise_scale=noise_scale) @@ -239,7 +240,7 @@ class SRCNN: # -------- tmp = input_data[:, label_idx, 3:131:2, 3:131:2] if label_param != 'cloud_fraction': - tmp = normalize(tmp, param, mean_std_dct, add_noise=add_noise, noise_scale=noise_scale) + tmp = normalize(tmp, label_param, mean_std_dct, add_noise=add_noise, noise_scale=noise_scale) else: tmp = np.where(np.isnan(tmp), 0, tmp) tmp = resample_2d_linear(x_64, y_64, tmp, t, s) @@ -247,7 +248,7 @@ class SRCNN: # --------- data = np.stack(data_norm, axis=3) data = data.astype(np.float32) - + # ----------------------------------------------------- # label = input_data[:, label_idx, 3:131:2, 3:131:2] label = input_data[:, label_idx, 3:131, 3:131] if label_param != 'cloud_fraction':