From 236d684afa5f98dcc21679cdf8381e37e6c2e156 Mon Sep 17 00:00:00 2001 From: tomrink <rink@ssec.wisc.edu> Date: Thu, 13 Apr 2023 11:41:54 -0500 Subject: [PATCH] snapshot... --- modules/util/viirs_surfrad.py | 16 +++++++++++++++- 1 file changed, 15 insertions(+), 1 deletion(-) diff --git a/modules/util/viirs_surfrad.py b/modules/util/viirs_surfrad.py index 4e024367..2e1fa95c 100644 --- a/modules/util/viirs_surfrad.py +++ b/modules/util/viirs_surfrad.py @@ -81,7 +81,7 @@ def process_cld_opd(grd_k): keep_cld = np.where(keep, (0.1 < grd_k), False) frac_cld = np.sum(keep_cld)/num_keep # if not (0.50 < frac_cld < 0.85): - if not (0.70 < frac_cld < 1.0): + if not (0.60 < frac_cld < 1.0): return None grd_k = np.where(np.invert(keep), 0, grd_k) # Convert NaN to 0 return grd_k @@ -149,6 +149,12 @@ def run_all(directory, out_directory, day_night='ANY', pattern='clavrx_*.nc', st np.save(out_directory + 'valid_ires_' + str(cnt), valid_i) num_valid_samples = valid_m.shape[0] + h, b = np.histogram(valid_i.flatten(), bins=20, range=[0.0, 160.0]) + hist_accum_valid_i += h + h, b = np.histogram(valid_m.flatten(), bins=20, range=[0.0, 160.0]) + hist_accum_valid_m += h + print(valid_i.shape, valid_m.shape) + num_train_samples = 0 if len(train_tiles_m) > 0: train_i = np.stack(train_tiles_i) @@ -157,6 +163,12 @@ def run_all(directory, out_directory, day_night='ANY', pattern='clavrx_*.nc', st np.save(out_directory + 'train_mres_' + str(cnt), train_m) num_train_samples = train_m.shape[0] + h, b = np.histogram(train_i.flatten(), bins=20, range=[0.0, 160.0]) + hist_accum_train_i += h + h, b = np.histogram(train_m.flatten(), bins=20, range=[0.0, 160.0]) + hist_accum_train_m += h + print(train_i.shape, train_m.shape) + valid_tiles_i = [] train_tiles_i = [] valid_tiles_m = [] @@ -179,6 +191,7 @@ def run_all(directory, out_directory, day_night='ANY', pattern='clavrx_*.nc', st np.save(out_directory + 'valid_mres_' + str(cnt), valid_m) np.save(out_directory + 'valid_ires_' + str(cnt), valid_i) num_valid_samples = valid_m.shape[0] + h, b = np.histogram(valid_i.flatten(), bins=20, range=[0.0, 160.0]) hist_accum_valid_i += h h, b = np.histogram(valid_m.flatten(), bins=20, range=[0.0, 160.0]) @@ -191,6 +204,7 @@ def run_all(directory, out_directory, day_night='ANY', pattern='clavrx_*.nc', st np.save(out_directory + 'train_ires_' + str(cnt), train_i) np.save(out_directory + 'train_mres_' + str(cnt), train_m) num_train_samples = train_m.shape[0] + h, b = np.histogram(train_i.flatten(), bins=20, range=[0.0, 160.0]) hist_accum_train_i += h h, b = np.histogram(train_m.flatten(), bins=20, range=[0.0, 160.0]) -- GitLab