diff --git a/modules/contrail/util.py b/modules/contrail/util.py index beecd27bfd5c7ff9bcc017583f7ab7583eba4f8a..fa2d673715f8beaf2b33dd82f845669ec9f59096 100644 --- a/modules/contrail/util.py +++ b/modules/contrail/util.py @@ -115,6 +115,7 @@ def extract(mask_image, image_ts, clavrx_path): vert_shear_3d = volume_np_to_xr(vert_shear_3d, ['Pressure', 'Latitude', 'Longitude'], lon_range=lon_range, lat_range=lat_range) vert_shear_3d = vert_shear_3d / units.hPa + all_list = [] voxel_dict = {key: [] for key in bins_dict.keys()} for key in bins_dict.keys(): print('working on pressure level: ', bins[key]) @@ -134,6 +135,7 @@ def extract(mask_image, image_ts, clavrx_path): # tmp = tmp.sel(Longitude=lon, Latitude=lat, method='nearest') voxel_dict[key].append((press, lat, lon, horz_shear_value, static_value, horz_wind_spd_value, vert_shear_value)) + all_list.append((press, lat, lon, horz_shear_value, static_value, horz_wind_spd_value, vert_shear_value)) # Create pandas DataFrame for each list of tuples in voxel_dict voxel_dict_df = {} @@ -141,8 +143,13 @@ def extract(mask_image, image_ts, clavrx_path): df = pd.DataFrame(v, columns=["pressure", "lat", "lon", "horz_wind_shear", "static_stability", "horz_wind_speed", "vert_wind_shear"]) voxel_dict_df[k] = df + # Create a DataFrame for all tuples + all_df = pd.DataFrame(all_list, columns=["pressure", "lat", "lon", "horz_wind_shear", "static_stability", "horz_wind_speed", "vert_wind_shear"]) + xr_dataset.close() + return all_df +