diff --git a/modules/deeplearning/cloud_opd_fcn_abi.py b/modules/deeplearning/cloud_opd_fcn_abi.py index 61672a37ce3f402982fc26cf2a8dd7ba25ccd1e6..1ff295c93b373dd0b8ba44ebd67fbda960b1c917 100644 --- a/modules/deeplearning/cloud_opd_fcn_abi.py +++ b/modules/deeplearning/cloud_opd_fcn_abi.py @@ -333,17 +333,35 @@ class SRCNN: tmp = tmp[:, slc_y, slc_x] data_norm.append(tmp) - for param in sub_fields: - idx = params.index(param) - tmp = input_data[:, idx, :, :] - tmp = tmp[:, slc_y, slc_x] - if param != 'refl_substddev_ch01': - # tmp = normalize(tmp, 'refl_0_65um_nom', mean_std_dct) - tmp = scale(tmp, 'refl_0_65um_nom', mean_std_dct) - else: - # tmp = np.where(np.isnan(tmp), 0, tmp) - tmp = scale2(tmp, 0.0, 20.0) - data_norm.append(tmp) + # for param in sub_fields: + # idx = params.index(param) + # tmp = input_data[:, idx, :, :] + # tmp = tmp[:, slc_y, slc_x] + # if param != 'refl_substddev_ch01': + # # tmp = normalize(tmp, 'refl_0_65um_nom', mean_std_dct) + # tmp = scale(tmp, 'refl_0_65um_nom', mean_std_dct) + # else: + # # tmp = np.where(np.isnan(tmp), 0, tmp) + # tmp = scale2(tmp, 0.0, 20.0) + # data_norm.append(tmp) + + idx = params.index(sub_fields[0]) + tmp = input_data[:, idx, :, :] + tmp = tmp[:, slc_y, slc_x] + rlo = scale(tmp, 'refl_0_65um_nom', mean_std_dct) + data_norm.append(rlo) + + idx = params.index(sub_fields[1]) + tmp = input_data[:, idx, :, :] + tmp = tmp[:, slc_y, slc_x] + tmp = scale(tmp, 'refl_0_65um_nom', mean_std_dct) + data_norm.append(tmp - rlo) + + idx = params.index(sub_fields[2]) + tmp = input_data[:, idx, :, :] + tmp = tmp[:, slc_y, slc_x] + tmp = scale2(tmp, 0.0, 20.0) + data_norm.append(tmp) tmp = input_label[:, label_idx_i, :, :] tmp = get_grid_cell_mean(tmp)