diff --git a/modules/deeplearning/unet_l1b_l2.py b/modules/deeplearning/unet_l1b_l2.py new file mode 100644 index 0000000000000000000000000000000000000000..42cc1e8bbc22a8f12dc7093c24a45226349c91c1 --- /dev/null +++ b/modules/deeplearning/unet_l1b_l2.py @@ -0,0 +1,1041 @@ +import glob +import tensorflow as tf +from util.setup import logdir, modeldir, cachepath, now, ancillary_path, home_dir +from util.util import EarlyStop, normalize, make_for_full_domain_predict +import os, datetime +import numpy as np +import pickle +import h5py + +# L1B M/I-bands: /apollo/cloud/scratch/cwhite/VIIRS_HRES/2019/2019_01_01/ +# CLAVRx: /apollo/cloud/scratch/Satellite_Output/VIIRS_HRES/2019/2019_01_01/ +# /apollo/cloud/scratch/Satellite_Output/andi/NEW/VIIRS_HRES/2019 + +LOG_DEVICE_PLACEMENT = False + +PROC_BATCH_SIZE = 50 +PROC_BATCH_BUFFER_SIZE = 50000 + +NumClasses = 2 +if NumClasses == 2: + NumLogits = 1 +else: + NumLogits = NumClasses + +BATCH_SIZE = 128 +NUM_EPOCHS = 40 + +TRACK_MOVING_AVERAGE = False +EARLY_STOP = True + +TRIPLET = False +CONV3D = False + +NOISE_TRAINING = True +NOISE_STDDEV = 0.10 +DO_AUGMENT = True + +img_width = 16 + +mean_std_file = home_dir+'/viirs_emis_rad_mean_std.pkl' +f = open(mean_std_file, 'rb') +mean_std_dct = pickle.load(f) +f.close() + +# -- Zero out params (Experimentation Only) ------------ +zero_out_params = ['cld_reff_dcomp', 'cld_opd_dcomp', 'iwc_dcomp', 'lwc_dcomp'] +DO_ZERO_OUT = False + + +def build_conv2d_block(conv, num_filters, activation, block_name, padding='SAME'): + with tf.name_scope(block_name): + skip = conv + + conv = tf.keras.layers.Conv2D(num_filters, kernel_size=5, strides=1, padding=padding, activation=activation)(conv) + conv = tf.keras.layers.MaxPool2D(padding=padding)(conv) + conv = tf.keras.layers.BatchNormalization()(conv) + print(conv.shape) + + skip = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=None)(skip) + skip = tf.keras.layers.MaxPool2D(padding=padding)(skip) + skip = tf.keras.layers.BatchNormalization()(skip) + + conv = conv + skip + conv = tf.keras.layers.LeakyReLU()(conv) + print(conv.shape) + + return conv + + +class UNET: + + def __init__(self): + + self.train_data = None + self.train_label = None + self.test_data = None + self.test_label = None + self.test_data_denorm = None + + self.train_dataset = None + self.inner_train_dataset = None + self.test_dataset = None + self.eval_dataset = None + self.X_img = None + self.X_prof = None + self.X_u = None + self.X_v = None + self.X_sfc = None + self.inputs = [] + self.y = None + self.handle = None + self.inner_handle = None + self.in_mem_batch = None + + self.h5f_l1b_trn = None + self.h5f_l1b_tst = None + self.h5f_l2_trn = None + self.h5f_l2_tst = None + + self.logits = None + + self.predict_data = None + self.predict_dataset = None + self.mean_list = None + self.std_list = None + + self.training_op = None + self.correct = None + self.accuracy = None + self.loss = None + self.pred_class = None + self.variable_averages = None + + self.global_step = None + + self.writer_train = None + self.writer_valid = None + self.writer_train_valid_loss = None + + self.OUT_OF_RANGE = False + + self.abi = None + self.temp = None + self.wv = None + self.lbfp = None + self.sfc = None + + self.in_mem_data_cache = {} + self.in_mem_data_cache_test = {} + + self.model = None + self.optimizer = None + self.ema = None + self.train_loss = None + self.train_accuracy = None + self.test_loss = None + self.test_accuracy = None + self.test_auc = None + self.test_recall = None + self.test_precision = None + self.test_confusion_matrix = None + self.test_true_pos = None + self.test_true_neg = None + self.test_false_pos = None + self.test_false_neg = None + + self.test_labels = [] + self.test_preds = [] + self.test_probs = None + + self.learningRateSchedule = None + self.num_data_samples = None + self.initial_learning_rate = None + + self.data_dct = None + self.train_data_files = None + self.train_label_files = None + self.test_data_files = None + self.test_label_files = None + + self.train_data_nda = None + self.train_label_nda = None + self.test_data_nda = None + self.test_label_nda = None + + # self.n_chans = len(self.train_params) + self.n_chans = 1 + if TRIPLET: + self.n_chans *= 3 + self.X_img = tf.keras.Input(shape=(None, None, self.n_chans)) + + self.inputs.append(self.X_img) + # self.inputs.append(tf.keras.Input(shape=(None, None, 5))) + self.inputs.append(tf.keras.Input(shape=(None, None, 1))) + + self.flight_level = 0 + + self.DISK_CACHE = False + + # if datapath is not None: + # self.DISK_CACHE = False + # f = open(datapath, 'rb') + # self.in_mem_data_cache = pickle.load(f) + # f.close() + + tf.debugging.set_log_device_placement(LOG_DEVICE_PLACEMENT) + + # Doesn't seem to play well with SLURM + # gpus = tf.config.experimental.list_physical_devices('GPU') + # if gpus: + # try: + # # Currently, memory growth needs to be the same across GPUs + # for gpu in gpus: + # tf.config.experimental.set_memory_growth(gpu, True) + # logical_gpus = tf.config.experimental.list_logical_devices('GPU') + # print(len(gpus), "Physical GPUs,", len(logical_gpus), "Logical GPUs") + # except RuntimeError as e: + # # Memory growth must be set before GPUs have been initialized + # print(e) + + # def get_in_mem_data_batch(self, idxs, is_training): + # + # # sort these to use as numpy indexing arrays + # nd_idxs = np.array(idxs) + # nd_idxs = np.sort(nd_idxs) + # + # data = [] + # for param in self.train_params: + # nda = self.get_parameter_data(param, nd_idxs, is_training) + # nda = normalize(nda, param, mean_std_dct) + # if DO_ZERO_OUT and is_training: + # try: + # zero_out_params.index(param) + # nda[:,] = 0.0 + # except ValueError: + # pass + # data.append(nda) + # data = np.stack(data) + # data = data.astype(np.float32) + # data = np.transpose(data, axes=(1, 2, 3, 0)) + # + # data_alt = self.get_scalar_data(nd_idxs, is_training) + # + # label = self.get_label_data(nd_idxs, is_training) + # label = np.where(label == -1, 0, label) + # + # # binary, two class + # if NumClasses == 2: + # label = np.where(label != 0, 1, label) + # label = label.reshape((label.shape[0], 1)) + # elif NumClasses == 3: + # label = np.where(np.logical_or(label == 1, label == 2), 1, label) + # label = np.where(np.invert(np.logical_or(label == 0, label == 1)), 2, label) + # label = label.reshape((label.shape[0], 1)) + # + # if is_training and DO_AUGMENT: + # data_ud = np.flip(data, axis=1) + # data_alt_ud = np.copy(data_alt) + # label_ud = np.copy(label) + # + # data_lr = np.flip(data, axis=2) + # data_alt_lr = np.copy(data_alt) + # label_lr = np.copy(label) + # + # data = np.concatenate([data, data_ud, data_lr]) + # data_alt = np.concatenate([data_alt, data_alt_ud, data_alt_lr]) + # label = np.concatenate([label, label_ud, label_lr]) + # + # return data, data_alt, label + + def get_in_mem_data_batch(self, idxs, is_training): + if is_training: + train_data = [] + train_label = [] + for k in idxs: + f = self.train_data_files[k] + nda = np.load(f) + train_data.append(nda) + + f = self.train_label_files[k] + nda = np.load(f) + train_label.append(nda) + + data = np.concatenate(train_data) + data = np.expand_dims(data, axis=3) + label = np.concatenate(train_label) + label = np.expand_dims(label, axis=3) + else: + test_data = [] + test_label = [] + for k in idxs: + f = self.test_data_files[k] + nda = np.load(f) + test_data.append(nda) + + f = self.test_label_files[k] + nda = np.load(f) + test_label.append(nda) + + data = np.concatenate(test_data) + data = np.expand_dims(data, axis=3) + + label = np.concatenate(test_label) + label = np.expand_dims(label, axis=3) + + data = data.astype(np.float32) + label = label.astype(np.float32) + + data = normalize(data, 'M15', mean_std_dct) + label = normalize(label, 'M15', mean_std_dct) + + if is_training and DO_AUGMENT: + data_ud = np.flip(data, axis=1) + label_ud = np.flip(label, axis=1) + + data_lr = np.flip(data, axis=2) + label_lr = np.flip(label, axis=2) + + data = np.concatenate([data, data_ud, data_lr]) + label = np.concatenate([label, label_ud, label_lr]) + + return data, data, label + + # def get_parameter_data(self, param, nd_idxs, is_training): + # if is_training: + # if param in self.train_params_l1b: + # h5f = self.h5f_l1b_trn + # else: + # h5f = self.h5f_l2_trn + # else: + # if param in self.train_params_l1b: + # h5f = self.h5f_l1b_tst + # else: + # h5f = self.h5f_l2_tst + # + # nda = h5f[param][nd_idxs,] + # return nda + # + # def get_label_data(self, nd_idxs, is_training): + # # Note: labels will be same for nd_idxs across both L1B and L2 + # if is_training: + # if self.h5f_l1b_trn is not None: + # h5f = self.h5f_l1b_trn + # else: + # h5f = self.h5f_l2_trn + # else: + # if self.h5f_l1b_tst is not None: + # h5f = self.h5f_l1b_tst + # else: + # h5f = self.h5f_l2_tst + # + # label = h5f['icing_intensity'][nd_idxs] + # label = label.astype(np.int32) + # return label + + def get_in_mem_data_batch_train(self, idxs): + return self.get_in_mem_data_batch(idxs, True) + + def get_in_mem_data_batch_test(self, idxs): + return self.get_in_mem_data_batch(idxs, False) + + def get_in_mem_data_batch_eval(self, idxs): + data = [] + for param in self.train_params: + nda = self.data_dct[param] + nda = normalize(nda, param, mean_std_dct) + data.append(nda) + data = np.stack(data) + data = data.astype(np.float32) + data = np.transpose(data, axes=(1, 2, 0)) + data = np.expand_dims(data, axis=0) + + nda = np.zeros([1]) + nda[0] = self.flight_level + nda = tf.one_hot(nda, 5).numpy() + nda = np.expand_dims(nda, axis=0) + nda = np.expand_dims(nda, axis=0) + + return data, nda + + @tf.function(input_signature=[tf.TensorSpec(None, tf.int32)]) + def data_function(self, indexes): + out = tf.numpy_function(self.get_in_mem_data_batch_train, [indexes], [tf.float32, tf.float32, tf.float32]) + return out + + @tf.function(input_signature=[tf.TensorSpec(None, tf.int32)]) + def data_function_test(self, indexes): + out = tf.numpy_function(self.get_in_mem_data_batch_test, [indexes], [tf.float32, tf.float32, tf.float32]) + return out + + @tf.function(input_signature=[tf.TensorSpec(None, tf.int32)]) + def data_function_evaluate(self, indexes): + # TODO: modify for user specified altitude + out = tf.numpy_function(self.get_in_mem_data_batch_eval, [indexes], [tf.float32, tf.float32]) + return out + + def get_train_dataset(self, indexes): + indexes = list(indexes) + + dataset = tf.data.Dataset.from_tensor_slices(indexes) + dataset = dataset.batch(PROC_BATCH_SIZE) + dataset = dataset.map(self.data_function, num_parallel_calls=8) + dataset = dataset.cache() + if DO_AUGMENT: + dataset = dataset.shuffle(PROC_BATCH_BUFFER_SIZE) + dataset = dataset.prefetch(buffer_size=1) + self.train_dataset = dataset + + def get_test_dataset(self, indexes): + indexes = list(indexes) + + dataset = tf.data.Dataset.from_tensor_slices(indexes) + dataset = dataset.batch(PROC_BATCH_SIZE) + dataset = dataset.map(self.data_function_test, num_parallel_calls=8) + dataset = dataset.cache() + self.test_dataset = dataset + + def get_evaluate_dataset(self, indexes): + indexes = list(indexes) + + dataset = tf.data.Dataset.from_tensor_slices(indexes) + dataset = dataset.map(self.data_function_evaluate, num_parallel_calls=8) + self.eval_dataset = dataset + + # def setup_pipeline(self, filename_l1b_trn, filename_l1b_tst, filename_l2_trn, filename_l2_tst, trn_idxs=None, tst_idxs=None, seed=None): + # if filename_l1b_trn is not None: + # self.h5f_l1b_trn = h5py.File(filename_l1b_trn, 'r') + # if filename_l1b_tst is not None: + # self.h5f_l1b_tst = h5py.File(filename_l1b_tst, 'r') + # if filename_l2_trn is not None: + # self.h5f_l2_trn = h5py.File(filename_l2_trn, 'r') + # if filename_l2_tst is not None: + # self.h5f_l2_tst = h5py.File(filename_l2_tst, 'r') + # + # if trn_idxs is None: + # # Note: time is same across both L1B and L2 for idxs + # if self.h5f_l1b_trn is not None: + # h5f = self.h5f_l1b_trn + # else: + # h5f = self.h5f_l2_trn + # time = h5f['time'] + # trn_idxs = np.arange(time.shape[0]) + # if seed is not None: + # np.random.seed(seed) + # np.random.shuffle(trn_idxs) + # + # if self.h5f_l1b_tst is not None: + # h5f = self.h5f_l1b_tst + # else: + # h5f = self.h5f_l2_tst + # time = h5f['time'] + # tst_idxs = np.arange(time.shape[0]) + # if seed is not None: + # np.random.seed(seed) + # np.random.shuffle(tst_idxs) + # + # self.num_data_samples = trn_idxs.shape[0] + # + # self.get_train_dataset(trn_idxs) + # self.get_test_dataset(tst_idxs) + # + # print('datetime: ', now) + # print('training and test data: ') + # print(filename_l1b_trn) + # print(filename_l1b_tst) + # print(filename_l2_trn) + # print(filename_l2_tst) + # print('---------------------------') + # print('num train samples: ', self.num_data_samples) + # print('BATCH SIZE: ', BATCH_SIZE) + # print('num test samples: ', tst_idxs.shape[0]) + # print('setup_pipeline: Done') + + def setup_pipeline(self, data_nda, label_nda, perc=0.20): + + num_samples = data_nda.shape[0] + num_test = int(num_samples * perc) + self.num_data_samples = num_samples - num_test + num_train = self.num_data_samples + + self.train_data_nda = data_nda[0:num_train] + self.train_label_nda = label_nda[0:num_train] + self.test_data_nda = data_nda[num_train:] + self.test_label_nda = label_nda[num_train:] + + trn_idxs = np.arange(self.train_data_nda.shape[0]) + tst_idxs = np.arange(self.test_data_nda.shape[0]) + + np.random.shuffle(tst_idxs) + + self.get_train_dataset(trn_idxs) + self.get_test_dataset(tst_idxs) + + print('datetime: ', now) + print('training and test data: ') + print('---------------------------') + print('num train samples: ', self.num_data_samples) + print('BATCH SIZE: ', BATCH_SIZE) + print('num test samples: ', tst_idxs.shape[0]) + print('setup_pipeline: Done') + + def setup_pipeline_files(self, data_files, label_files, perc=0.20): + num_files = len(data_files) + num_test_files = int(num_files * perc) + num_train_files = num_files - num_test_files + + self.train_data_files = data_files[0:num_train_files] + self.train_label_files = label_files[0:num_train_files] + self.test_data_files = data_files[num_train_files:] + self.test_label_files = label_files[num_train_files:] + + trn_idxs = np.arange(num_train_files) + np.random.shuffle(trn_idxs) + tst_idxs = np.arange(num_test_files) + + self.get_train_dataset(trn_idxs) + self.get_test_dataset(tst_idxs) + + self.num_data_samples = num_train_files * 30 # approximately + + print('datetime: ', now) + print('training and test data: ') + print('---------------------------') + print('num train samples: ', self.num_data_samples) + print('BATCH SIZE: ', BATCH_SIZE) + print('num test samples: ', tst_idxs.shape[0]) + print('setup_pipeline: Done') + + def setup_test_pipeline(self, filename_l1b, filename_l2, seed=None, shuffle=False): + + if filename_l1b is not None: + self.h5f_l1b_tst = h5py.File(filename_l1b, 'r') + if filename_l2 is not None: + self.h5f_l2_tst = h5py.File(filename_l2, 'r') + + if self.h5f_l1b_tst is not None: + h5f = self.h5f_l1b_tst + else: + h5f = self.h5f_l2_tst + time = h5f['time'] + tst_idxs = np.arange(time.shape[0]) + self.num_data_samples = len(tst_idxs) + if seed is not None: + np.random.seed(seed) + if shuffle: + np.random.shuffle(tst_idxs) + + self.get_test_dataset(tst_idxs) + + print('num test samples: ', tst_idxs.shape[0]) + print('setup_test_pipeline: Done') + + def setup_eval_pipeline(self, data_dct, num_tiles=1): + self.data_dct = data_dct + idxs = np.arange(num_tiles) + self.num_data_samples = idxs.shape[0] + + self.get_evaluate_dataset(idxs) + + def build_unet(self): + print('build_cnn') + # padding = "VALID" + padding = "SAME" + + # activation = tf.nn.relu + # activation = tf.nn.elu + activation = tf.nn.leaky_relu + momentum = 0.99 + + # num_filters = len(self.train_params) * 4 + num_filters = self.n_chans * 4 + + input_2d = self.inputs[0] + conv = tf.keras.layers.Conv2D(num_filters, kernel_size=5, strides=1, padding=padding, activation=None)(input_2d) + print('Contracting Branch') + print('input: ', conv.shape) + skip = conv + + if NOISE_TRAINING: + conv = tf.keras.layers.GaussianNoise(stddev=NOISE_STDDEV)(conv) + + # Contracting (Encoding) ------------------------------------------------------------------------------------ + conv_1 = conv + + conv = tf.keras.layers.Conv2D(num_filters, kernel_size=5, strides=1, padding=padding, activation=activation)(conv) + conv = tf.keras.layers.MaxPool2D(padding=padding)(conv) + conv = tf.keras.layers.BatchNormalization()(conv) + + skip = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=None)(skip) + skip = tf.keras.layers.MaxPool2D(padding=padding)(skip) + skip = tf.keras.layers.BatchNormalization()(skip) + + conv = conv + skip + conv = tf.keras.layers.LeakyReLU()(conv) + print('1d: ', conv.shape) + # ----------------------------------------------------------------------------------------------------------- + + conv_2 = conv + skip = conv + num_filters *= 2 + conv = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=activation)(conv) + conv = tf.keras.layers.MaxPool2D(padding=padding)(conv) + conv = tf.keras.layers.BatchNormalization()(conv) + + skip = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=None)(skip) + skip = tf.keras.layers.MaxPool2D(padding=padding)(skip) + skip = tf.keras.layers.BatchNormalization()(skip) + + conv = conv + skip + conv = tf.keras.layers.LeakyReLU()(conv) + print('2d: ', conv.shape) + # ---------------------------------------------------------------------------------------------------------- + + conv_3 = conv + skip = conv + num_filters *= 2 + conv = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=activation)(conv) + conv = tf.keras.layers.MaxPool2D(padding=padding)(conv) + conv = tf.keras.layers.BatchNormalization()(conv) + + skip = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=None)(skip) + skip = tf.keras.layers.MaxPool2D(padding=padding)(skip) + skip = tf.keras.layers.BatchNormalization()(skip) + + conv = conv + skip + conv = tf.keras.layers.LeakyReLU()(conv) + print('3d: ', conv.shape) + # ----------------------------------------------------------------------------------------------------------- + + conv_4 = conv + skip = conv + num_filters *= 2 + conv = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=activation)(conv) + conv = tf.keras.layers.MaxPool2D(padding=padding)(conv) + conv = tf.keras.layers.BatchNormalization()(conv) + + skip = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=None)(skip) + skip = tf.keras.layers.MaxPool2D(padding=padding)(skip) + skip = tf.keras.layers.BatchNormalization()(skip) + + conv = conv + skip + conv = tf.keras.layers.LeakyReLU()(conv) + print('4d: ', conv.shape) + + # Expanding (Decoding) branch ------------------------------------------------------------------------------- + print('expanding branch') + + num_filters /= 2 + conv = tf.keras.layers.Conv2DTranspose(num_filters, kernel_size=3, strides=2, padding=padding)(conv) + conv = tf.keras.layers.concatenate([conv, conv_4]) + conv = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=activation)(conv) + conv = tf.keras.layers.BatchNormalization()(conv) + print('5: ', conv.shape) + + num_filters /= 2 + conv = tf.keras.layers.Conv2DTranspose(num_filters, kernel_size=3, strides=2, padding=padding)(conv) + conv = tf.keras.layers.concatenate([conv, conv_3]) + conv = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=activation)(conv) + conv = tf.keras.layers.BatchNormalization()(conv) + print('6: ', conv.shape) + + num_filters /= 2 + conv = tf.keras.layers.Conv2DTranspose(num_filters, kernel_size=3, strides=2, padding=padding)(conv) + conv = tf.keras.layers.concatenate([conv, conv_2]) + conv = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=activation)(conv) + conv = tf.keras.layers.BatchNormalization()(conv) + print('7: ', conv.shape) + + num_filters /= 2 + conv = tf.keras.layers.Conv2DTranspose(num_filters, kernel_size=3, strides=2, padding=padding)(conv) + print('8: ', conv.shape) + + #conv = tf.keras.layers.Conv2DTranspose(num_filters, kernel_size=3, strides=2, padding=padding)(conv) + #print('9: ', conv.shape) + + # if NumClasses == 2: + # activation = tf.nn.sigmoid # For binary + # else: + # activation = tf.nn.softmax # For multi-class + activation = tf.nn.sigmoid + + # Called logits, but these are actually probabilities, see activation + self.logits = tf.keras.layers.Conv2D(1, kernel_size=1, strides=1, padding=padding, name='probability', activation=activation)(conv) + + print(self.logits.shape) + + def build_training(self): + # if NumClasses == 2: + # self.loss = tf.keras.losses.BinaryCrossentropy(from_logits=False) # for two-class only + # else: + # self.loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False) # For multi-class + self.loss = tf.keras.losses.MeanSquaredError() # Regression + + # decayed_learning_rate = learning_rate * decay_rate ^ (global_step / decay_steps) + initial_learning_rate = 0.002 + decay_rate = 0.95 + steps_per_epoch = int(self.num_data_samples/BATCH_SIZE) # one epoch + decay_steps = int(steps_per_epoch / 2) + print('initial rate, decay rate, steps/epoch, decay steps: ', initial_learning_rate, decay_rate, steps_per_epoch, decay_steps) + + self.learningRateSchedule = tf.keras.optimizers.schedules.ExponentialDecay(initial_learning_rate, decay_steps, decay_rate) + + optimizer = tf.keras.optimizers.Adam(learning_rate=self.learningRateSchedule) + + if TRACK_MOVING_AVERAGE: + # Not really sure this works properly (from tfa) + # optimizer = tfa.optimizers.MovingAverage(optimizer) + self.ema = tf.train.ExponentialMovingAverage(decay=0.9999) + + self.optimizer = optimizer + self.initial_learning_rate = initial_learning_rate + + def build_evaluation(self): + #self.train_loss = tf.keras.metrics.Mean(name='train_loss') + #self.test_loss = tf.keras.metrics.Mean(name='test_loss') + self.train_accuracy = tf.keras.metrics.MeanAbsoluteError(name='train_accuracy') + self.test_accuracy = tf.keras.metrics.MeanAbsoluteError(name='test_accuracy') + self.train_loss = tf.keras.metrics.Mean(name='train_loss') + self.test_loss = tf.keras.metrics.Mean(name='test_loss') + + # if NumClasses == 2: + # self.train_accuracy = tf.keras.metrics.BinaryAccuracy(name='train_accuracy') + # self.test_accuracy = tf.keras.metrics.BinaryAccuracy(name='test_accuracy') + # self.test_auc = tf.keras.metrics.AUC(name='test_auc') + # self.test_recall = tf.keras.metrics.Recall(name='test_recall') + # self.test_precision = tf.keras.metrics.Precision(name='test_precision') + # self.test_true_neg = tf.keras.metrics.TrueNegatives(name='test_true_neg') + # self.test_true_pos = tf.keras.metrics.TruePositives(name='test_true_pos') + # self.test_false_neg = tf.keras.metrics.FalseNegatives(name='test_false_neg') + # self.test_false_pos = tf.keras.metrics.FalsePositives(name='test_false_pos') + # else: + # self.train_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='train_accuracy') + # self.test_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='test_accuracy') + + @tf.function + def train_step(self, mini_batch): + inputs = [mini_batch[0], mini_batch[1]] + labels = mini_batch[2] + with tf.GradientTape() as tape: + pred = self.model(inputs, training=True) + loss = self.loss(labels, pred) + total_loss = loss + if len(self.model.losses) > 0: + reg_loss = tf.math.add_n(self.model.losses) + total_loss = loss + reg_loss + gradients = tape.gradient(total_loss, self.model.trainable_variables) + self.optimizer.apply_gradients(zip(gradients, self.model.trainable_variables)) + if TRACK_MOVING_AVERAGE: + self.ema.apply(self.model.trainable_variables) + + self.train_loss(loss) + self.train_accuracy(labels, pred) + + return loss + + @tf.function + def test_step(self, mini_batch): + inputs = [mini_batch[0], mini_batch[1]] + labels = mini_batch[2] + pred = self.model(inputs, training=False) + t_loss = self.loss(labels, pred) + + self.test_loss(t_loss) + self.test_accuracy(labels, pred) + # if NumClasses == 2: + # self.test_auc(labels, pred) + # self.test_recall(labels, pred) + # self.test_precision(labels, pred) + # self.test_true_neg(labels, pred) + # self.test_true_pos(labels, pred) + # self.test_false_neg(labels, pred) + # self.test_false_pos(labels, pred) + + def predict(self, mini_batch): + inputs = [mini_batch[0], mini_batch[1]] + labels = mini_batch[2] + pred = self.model(inputs, training=False) + t_loss = self.loss(labels, pred) + + self.test_labels.append(labels) + self.test_preds.append(pred.numpy()) + + self.test_loss(t_loss) + self.test_accuracy(labels, pred) + # if NumClasses == 2: + # self.test_auc(labels, pred) + # self.test_recall(labels, pred) + # self.test_precision(labels, pred) + # self.test_true_neg(labels, pred) + # self.test_true_pos(labels, pred) + # self.test_false_neg(labels, pred) + # self.test_false_pos(labels, pred) + + def reset_test_metrics(self): + self.test_loss.reset_states() + self.test_accuracy.reset_states() + # if NumClasses == 2: + # self.test_auc.reset_states() + # self.test_recall.reset_states() + # self.test_precision.reset_states() + # self.test_true_neg.reset_states() + # self.test_true_pos.reset_states() + # self.test_false_neg.reset_states() + # self.test_false_pos.reset_states() + + def get_metrics(self): + recall = self.test_recall.result() + precsn = self.test_precision.result() + f1 = 2 * (precsn * recall) / (precsn + recall) + + tn = self.test_true_neg.result() + tp = self.test_true_pos.result() + fn = self.test_false_neg.result() + fp = self.test_false_pos.result() + + mcc = ((tp * tn) - (fp * fn)) / np.sqrt((tp + fp) * (tp + fn) * (tn + fp) * (tn + fn)) + return f1, mcc + + def do_training(self, ckpt_dir=None): + + if ckpt_dir is None: + if not os.path.exists(modeldir): + os.mkdir(modeldir) + ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model) + ckpt_manager = tf.train.CheckpointManager(ckpt, modeldir, max_to_keep=3) + else: + ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model) + ckpt_manager = tf.train.CheckpointManager(ckpt, ckpt_dir, max_to_keep=3) + + self.writer_train = tf.summary.create_file_writer(os.path.join(logdir, 'plot_train')) + self.writer_valid = tf.summary.create_file_writer(os.path.join(logdir, 'plot_valid')) + self.writer_train_valid_loss = tf.summary.create_file_writer(os.path.join(logdir, 'plot_train_valid_loss')) + + step = 0 + total_time = 0 + best_test_loss = np.finfo(dtype=np.float).max + best_test_acc = 0 + best_test_recall = 0 + best_test_precision = 0 + best_test_auc = 0 + best_test_f1 = 0 + best_test_mcc = 0 + + if EARLY_STOP: + es = EarlyStop() + + for epoch in range(NUM_EPOCHS): + self.train_loss.reset_states() + self.train_accuracy.reset_states() + + t0 = datetime.datetime.now().timestamp() + + proc_batch_cnt = 0 + n_samples = 0 + + for data0, data1, label in self.train_dataset: + trn_ds = tf.data.Dataset.from_tensor_slices((data0, data1, label)) + trn_ds = trn_ds.batch(BATCH_SIZE) + for mini_batch in trn_ds: + if self.learningRateSchedule is not None: + loss = self.train_step(mini_batch) + + if (step % 100) == 0: + + with self.writer_train.as_default(): + tf.summary.scalar('loss_trn', loss.numpy(), step=step) + tf.summary.scalar('learning_rate', self.optimizer._decayed_lr('float32').numpy(), step=step) + tf.summary.scalar('num_train_steps', step, step=step) + tf.summary.scalar('num_epochs', epoch, step=step) + + self.reset_test_metrics() + for data0_tst, data1_tst, label_tst in self.test_dataset: + tst_ds = tf.data.Dataset.from_tensor_slices((data0_tst, data1_tst, label_tst)) + tst_ds = tst_ds.batch(BATCH_SIZE) + for mini_batch_test in tst_ds: + self.test_step(mini_batch_test) + + # if NumClasses == 2: + # f1, mcc = self.get_metrics() + + with self.writer_valid.as_default(): + tf.summary.scalar('loss_val', self.test_loss.result(), step=step) + tf.summary.scalar('acc_val', self.test_accuracy.result(), step=step) + # if NumClasses == 2: + # tf.summary.scalar('auc_val', self.test_auc.result(), step=step) + # tf.summary.scalar('recall_val', self.test_recall.result(), step=step) + # tf.summary.scalar('prec_val', self.test_precision.result(), step=step) + # tf.summary.scalar('f1_val', f1, step=step) + # tf.summary.scalar('mcc_val', mcc, step=step) + # tf.summary.scalar('num_train_steps', step, step=step) + # tf.summary.scalar('num_epochs', epoch, step=step) + + with self.writer_train_valid_loss.as_default(): + tf.summary.scalar('loss_trn', loss.numpy(), step=step) + tf.summary.scalar('loss_val', self.test_loss.result(), step=step) + + print('****** test loss, acc, lr: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy(), + self.optimizer._decayed_lr('float32').numpy()) + + step += 1 + print('train loss: ', loss.numpy()) + + proc_batch_cnt += 1 + n_samples += data0.shape[0] + print('proc_batch_cnt: ', proc_batch_cnt, n_samples) + + t1 = datetime.datetime.now().timestamp() + print('End of Epoch: ', epoch+1, 'elapsed time: ', (t1-t0)) + total_time += (t1-t0) + + self.reset_test_metrics() + for data0, data1, label in self.test_dataset: + ds = tf.data.Dataset.from_tensor_slices((data0, data1, label)) + ds = ds.batch(BATCH_SIZE) + for mini_batch in ds: + self.test_step(mini_batch) + + print('loss, acc: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy()) + # if NumClasses == 2: + # f1, mcc = self.get_metrics() + # print('loss, acc, recall, precision, auc, f1, mcc: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy(), + # self.test_recall.result().numpy(), self.test_precision.result().numpy(), self.test_auc.result().numpy(), f1.numpy(), mcc.numpy()) + # else: + # print('loss, acc: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy()) + print('------------------------------------------------------') + + tst_loss = self.test_loss.result().numpy() + if tst_loss < best_test_loss: + best_test_loss = tst_loss + # if NumClasses == 2: + # best_test_acc = self.test_accuracy.result().numpy() + # best_test_recall = self.test_recall.result().numpy() + # best_test_precision = self.test_precision.result().numpy() + # best_test_auc = self.test_auc.result().numpy() + # best_test_f1 = f1.numpy() + # best_test_mcc = mcc.numpy() + + ckpt_manager.save() + + if self.DISK_CACHE and epoch == 0: + f = open(cachepath, 'wb') + pickle.dump(self.in_mem_data_cache, f) + f.close() + + if EARLY_STOP and es.check_stop(tst_loss): + break + + print('total time: ', total_time) + self.writer_train.close() + self.writer_valid.close() + self.writer_train_valid_loss.close() + + if self.h5f_l1b_trn is not None: + self.h5f_l1b_trn.close() + if self.h5f_l1b_tst is not None: + self.h5f_l1b_tst.close() + if self.h5f_l2_trn is not None: + self.h5f_l2_trn.close() + if self.h5f_l2_tst is not None: + self.h5f_l2_tst.close() + + # f = open(home_dir+'/best_stats_'+now+'.pkl', 'wb') + # pickle.dump((best_test_loss, best_test_acc, best_test_recall, best_test_precision, best_test_auc, best_test_f1, best_test_mcc), f) + # f.close() + + def build_model(self): + self.build_unet() + self.model = tf.keras.Model(self.inputs, self.logits) + + def restore(self, ckpt_dir): + + ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model) + ckpt_manager = tf.train.CheckpointManager(ckpt, ckpt_dir, max_to_keep=3) + + ckpt.restore(ckpt_manager.latest_checkpoint) + + self.reset_test_metrics() + + for data0, data1, label in self.test_dataset: + ds = tf.data.Dataset.from_tensor_slices((data0, data1, label)) + ds = ds.batch(BATCH_SIZE) + for mini_batch_test in ds: + self.predict(mini_batch_test) + f1, mcc = self.get_metrics() + print('loss, acc: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy(), self.test_recall.result().numpy(), + self.test_precision.result().numpy(), self.test_auc.result().numpy(), f1.numpy(), mcc.numpy()) + + labels = np.concatenate(self.test_labels) + self.test_labels = labels + + preds = np.concatenate(self.test_preds) + self.test_probs = preds + + if NumClasses == 2: + preds = np.where(preds > 0.5, 1, 0) + else: + preds = np.argmax(preds, axis=1) + + self.test_preds = preds + + def do_evaluate(self, prob_thresh=0.5): + + self.reset_test_metrics() + + pred_s = [] + + for data in self.eval_dataset: + print(data[0].shape, data[1].shape) + pred = self.model([data]) + print(pred.shape, np.histogram(pred.numpy())) + + preds = np.concatenate(pred_s) + preds = preds[:,0] + self.test_probs = preds + + if NumClasses == 2: + preds = np.where(preds > prob_thresh, 1, 0) + else: + preds = np.argmax(preds, axis=1) + self.test_preds = preds + + def run(self, filename_l1b_trn, filename_l1b_tst, filename_l2_trn, filename_l2_tst): + self.setup_pipeline(filename_l1b_trn, filename_l1b_tst, filename_l2_trn, filename_l2_tst) + self.build_model() + self.build_training() + self.build_evaluation() + self.do_training() + + def run_test(self, directory): + data_files = glob.glob(directory+'mod_res*.npy') + label_files = [f.replace('mod', 'img') for f in data_files] + self.setup_pipeline_files(data_files, label_files) + self.build_model() + self.build_training() + self.build_evaluation() + self.do_training() + + def run_restore(self, filename_l1b, filename_l2, ckpt_dir): + self.setup_test_pipeline(filename_l1b, filename_l2) + self.build_model() + self.build_training() + self.build_evaluation() + self.restore(ckpt_dir) + + if self.h5f_l1b_tst is not None: + self.h5f_l1b_tst.close() + if self.h5f_l2_tst is not None: + self.h5f_l2_tst.close() + + def run_evaluate(self, filename, ckpt_dir): + data_dct, ll, cc = make_for_full_domain_predict(filename, name_list=self.train_params) + self.setup_eval_pipeline(data_dct, len(ll)) + self.build_model() + self.build_training() + self.build_evaluation() + self.do_evaluate(ckpt_dir) + + +if __name__ == "__main__": + nn = UNET() + nn.run('matchup_filename')