diff --git a/modules/deeplearning/cloud_fraction_fcn_abi.py b/modules/deeplearning/cloud_fraction_fcn_abi.py index e187c6a06b4136ace82c23c5ad78b90c4bb8ed6e..f3a0f7ff9719f1879f4ea3715d18fef299259065 100644 --- a/modules/deeplearning/cloud_fraction_fcn_abi.py +++ b/modules/deeplearning/cloud_fraction_fcn_abi.py @@ -790,15 +790,12 @@ def run_evaluate_static(in_file, out_file, ckpt_dir): refl = np.where(np.isnan(refl), 0, refl) refl = normalize(refl, 'refl_0_65um_nom', mean_std_dct) - # refl_lo = get_grid_values_all(h5f, 'refl_submin_ch01') refl_lo = get_grid_values_all(h5f, 'refl_0_65um_nom_min_sub') refl_lo = refl_lo[0:2500, :] refl_lo = normalize(refl_lo, 'refl_0_65um_nom', mean_std_dct) - # refl_hi = get_grid_values_all(h5f, 'refl_submax_ch01') refl_hi = get_grid_values_all(h5f, 'refl_0_65um_nom_max_sub') refl_hi = refl_hi[0:2500, :] refl_hi = normalize(refl_hi, 'refl_0_65um_nom', mean_std_dct) - # refl_std = get_grid_values_all(h5f, 'refl_substdev_ch01') refl_std = get_grid_values_all(h5f, 'refl_0_65um_nom_stddev_sub') refl_std = refl_std[0:2500, :] refl_std = np.where(np.isnan(refl_std), 0, refl_std) @@ -807,7 +804,6 @@ def run_evaluate_static(in_file, out_file, ckpt_dir): cp = cp[0:2500, :] cp = np.where(np.isnan(cp), 0, cp) - # data = np.stack([bt, refl_lo, refl_hi, refl_std, cp], axis=2) data = np.stack([bt, refl, refl_lo, refl_hi, refl_std, cp], axis=2) data = np.expand_dims(data, axis=0)