diff --git a/modules/machine_learning/classification.py b/modules/machine_learning/classification.py index f6f321b716acdb5cc15523da83ab39d2a9e14bc0..87de148688689f47dce3160644ad5d10af99ea80 100644 --- a/modules/machine_learning/classification.py +++ b/modules/machine_learning/classification.py @@ -15,10 +15,10 @@ import sklearn.tree as tree from sklearn.tree import export_graphviz -# def analyze(dataFrame): -# no_icing_df = dataFrame[dataFrame['icing_intensity'] == -1] -# icing_df = dataFrame[dataFrame['icing_intensity'] >= 1] -# return no_icing_df, icing_df +def analyze(dataFrame): + no_icing_df = dataFrame[dataFrame['icing_intensity'] == -1] + icing_df = dataFrame[dataFrame['icing_intensity'] >= 1] + return no_icing_df, icing_df def plot_confusion_matrix(cm, classes, @@ -82,7 +82,7 @@ def get_feature_target_data(data_frame, standardize=True): icing_df = data_frame # The independent variables (features) we want to use: - params = ['cld_geo_thick', 'cld_temp_acha', 'conv_cloud_fraction', 'supercooled_cloud_fraction', 'cld_reff_dcomp', + params = ['cld_temp_acha', 'conv_cloud_fraction', 'supercooled_cloud_fraction', 'cld_reff_dcomp', 'cld_opd_dcomp', 'iwc_dcomp'] # Remove this column icing_df = icing_df.drop('lwc_dcomp', axis=1)