diff --git a/modules/deeplearning/cnn_cld_frac_mod_res.py b/modules/deeplearning/cnn_cld_frac_mod_res.py index df09941a4b520ae76738727e2c3f8dee216b9428..e1f924221c0c015541b93657e7e64340c5eeeedb 100644 --- a/modules/deeplearning/cnn_cld_frac_mod_res.py +++ b/modules/deeplearning/cnn_cld_frac_mod_res.py @@ -341,6 +341,7 @@ class SRCNN: for param in data_params_half: idx = params.index(param) tmp = input_data[:, idx, :, :] + tmp = tmp.copy() if DO_ESPCN: tmp = tmp[:, slc_y_2, slc_x_2] else: # Half res upsampled to full res: @@ -354,6 +355,7 @@ class SRCNN: for param in data_params_full: idx = params.index(param) tmp = input_data[:, idx, :, :] + tmp = tmp.copy() lo, hi, std, avg = get_min_max_std(tmp) # std = np.where(np.isnan(std), 0, std) @@ -367,6 +369,7 @@ class SRCNN: # data_norm.append(std[:, 0:66, 0:66]) # --------------------------------------------------- tmp = input_data[:, label_idx, :, :] + tmp = tmp.copy() tmp = np.where(np.isnan(tmp), 0, tmp) if DO_ESPCN: tmp = tmp[:, slc_y_2, slc_x_2] @@ -390,6 +393,7 @@ class SRCNN: # ----------------------------------------------------- # ----------------------------------------------------- label = input_data[:, label_idx, :, :] + label = label.copy() label = label[:, y_128, x_128] label = get_label_data(label)