From 11dd86e23f751d508440c8148b52e2475260b7ad Mon Sep 17 00:00:00 2001 From: tomrink <rink@ssec.wisc.edu> Date: Sat, 13 Aug 2022 10:47:00 -0500 Subject: [PATCH] test... --- modules/deeplearning/espcn.py | 34 ++++++++++++++++++---------------- 1 file changed, 18 insertions(+), 16 deletions(-) diff --git a/modules/deeplearning/espcn.py b/modules/deeplearning/espcn.py index 63e7e415..7257ea11 100644 --- a/modules/deeplearning/espcn.py +++ b/modules/deeplearning/espcn.py @@ -1,7 +1,7 @@ import glob import tensorflow as tf from util.setup import logdir, modeldir, cachepath, now, ancillary_path -from util.util import EarlyStop, normalize, denormalize +from util.util import EarlyStop, normalize, denormalize, resample import os, datetime import numpy as np import pickle @@ -59,6 +59,11 @@ data_idx, label_idx = 1, 1 data_param = data_params[data_idx] label_param = label_params[label_idx] +x_70 = np.arange(70) +y_70 = np.arange(70) +x_70_2 = x_70[3:67:2] +y_70_2 = y_70[3:67:2] + def build_residual_conv2d_block(conv, num_filters, block_name, activation=tf.nn.leaky_relu, padding='SAME'): @@ -194,18 +199,15 @@ class ESPCN: data = np.concatenate(label_s) label = np.concatenate(label_s) - # label = label[:, label_idx, :, :] - #label = label[:, label_idx, 3:67, 3:67] - label = label[:, label_idx, 0:32, 0:32] - label = np.expand_dims(label, axis=3) - #label = tf.image.resize(label, (32, 32), method='nearest').numpy() - - # data = data[:, data_idx, :, :] + data = data[:, data_idx, :, :] #data = data[:, data_idx, 3:67, 3:67] - data = data[:, data_idx, 0:32, 0:32] + data = resample(x_70, y_70, data, x_70_2, y_70_2) data = np.expand_dims(data, axis=3) - #data = tf.image.resize(data, (32, 32), method='nearest').numpy() - # data = tf.image.resize(data, (36, 36)).numpy() + # data = tf.image.resize(data, (32, 32)).numpy() + + # label = label[:, label_idx, :, :] + label = label[:, label_idx, 3:67:2, 3:67:2] + label = np.expand_dims(label, axis=3) data = data.astype(np.float32) label = label.astype(np.float32) @@ -357,11 +359,11 @@ class ESPCN: conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_1') - # conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_2') - # - # conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_3') - # - # conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_4') + conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_2') + + conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_3') + + conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_4') conv_b = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding)(conv_b) -- GitLab