diff --git a/modules/deeplearning/cloud_opd_srcnn_abi.py b/modules/deeplearning/cloud_opd_srcnn_abi.py index 634060fb1bc6207c553af91657b19f497a85a551..0f0fb501fe9e8b8202f5630498566ed9e7188bb2 100644 --- a/modules/deeplearning/cloud_opd_srcnn_abi.py +++ b/modules/deeplearning/cloud_opd_srcnn_abi.py @@ -54,7 +54,7 @@ label_param = 'cld_opd_dcomp' params = ['temp_11_0um_nom', 'refl_0_65um_nom', label_param] params_i = ['temp_11_0um_nom', 'refl_0_65um_nom', label_param] -data_params_half = ['temp_11_0um_nom'] +data_params_half = ['temp_11_0um_nom', 'refl_0_65um_nom'] data_params_full = ['refl_0_65um_nom'] label_idx_i = params_i.index(label_param) @@ -142,7 +142,7 @@ def get_min_max_std(grd_k): class SRCNN: - def __init__(self, LEN_Y=128, LEN_X=128): + def __init__(self, LEN_Y=32, LEN_X=32): self.train_data = None self.train_label = None @@ -258,13 +258,13 @@ class SRCNN: tmp = normalize(tmp, param, mean_std_dct) data_norm.append(tmp) - for param in data_params_full: - idx = params_i.index(param) - tmp = input_label[:, idx, :, :] - tmp = np.where(np.isnan(tmp), 0, tmp) - - tmp = normalize(tmp, param, mean_std_dct) - data_norm.append(tmp[:, self.slc_y, self.slc_x]) + # for param in data_params_full: + # idx = params_i.index(param) + # tmp = input_label[:, idx, :, :] + # tmp = np.where(np.isnan(tmp), 0, tmp) + # + # tmp = normalize(tmp, param, mean_std_dct) + # data_norm.append(tmp[:, self.slc_y, self.slc_x]) # --------------------------------------------------- tmp = input_label[:, label_idx_i, :, :] tmp = np.where(np.isnan(tmp), 0, tmp)