diff --git a/modules/deeplearning/espcn.py b/modules/deeplearning/espcn.py index dc11ac894ae8f499f06279158afbbc96b275f673..c506a4f563ed6ccdbed13e89810f39e70163dd25 100644 --- a/modules/deeplearning/espcn.py +++ b/modules/deeplearning/espcn.py @@ -173,6 +173,7 @@ class ESPCN: self.X_img = tf.keras.Input(shape=(None, None, self.n_chans)) # self.X_img = tf.keras.Input(shape=(36, 36, self.n_chans)) self.X_img = tf.keras.Input(shape=(32, 32, self.n_chans)) + # self.X_img = tf.keras.Input(shape=(66, 66, self.n_chans)) self.inputs.append(self.X_img) @@ -196,12 +197,12 @@ class ESPCN: # label = label[:, label_idx, :, :] label = label[:, label_idx, 3:67, 3:67] label = np.expand_dims(label, axis=3) - #label = tf.image.resize(label, (32, 32), method='nearest').numpy() + label = tf.image.resize(label, (32, 32), method='nearest').numpy() # data = data[:, data_idx, :, :] data = data[:, data_idx, 3:67, 3:67] data = np.expand_dims(data, axis=3) - #data = tf.image.resize(data, (32, 32), method='nearest').numpy() + data = tf.image.resize(data, (32, 32), method='nearest').numpy() # data = tf.image.resize(data, (36, 36)).numpy() data = data.astype(np.float32) @@ -346,6 +347,8 @@ class ESPCN: print('input: ', conv.shape) conv = conv_b = tf.keras.layers.Conv2D(num_filters, kernel_size=3, padding=padding)(input_2d) + # conv = conv_b = tf.keras.layers.Conv2D(num_filters, kernel_size=3, padding='VALID')(input_2d) + print(conv.shape) if NOISE_TRAINING: conv = conv_b = tf.keras.layers.GaussianNoise(stddev=NOISE_STDDEV)(conv)