diff --git a/modules/GSOC/E2_ESRGAN/lib/train.py b/modules/GSOC/E2_ESRGAN/lib/train.py index f9d56424909ddc092ae32820321bde6669d1ada0..1f1d9c8a9945b75d8e36e0b3b3a7ae7302b2f4f4 100644 --- a/modules/GSOC/E2_ESRGAN/lib/train.py +++ b/modules/GSOC/E2_ESRGAN/lib/train.py @@ -134,8 +134,7 @@ class Trainer(object): "warmup_loss", metric.result(), step=G_optimizer.iterations) tf.summary.scalar("mean_psnr", psnr_metric.result(), G_optimizer.iterations) - # if not num_steps % self.settings["print_step"]: # test - if True: + if not num_steps % self.settings["print_step"]: logging.info( "[WARMUP] Step: {}\tGenerator Loss: {}" "\tPSNR: {}\tTime Taken: {} sec".format( @@ -302,8 +301,7 @@ class Trainer(object): tf.summary.scalar("mean_psnr", psnr_metric.result(), step=D_optimizer.iterations) # Logging and Checkpointing - # if not num_step % self.settings["print_step"]: # testing - if True: + if not num_step % self.settings["print_step"]: logging.info( "Step: {}\tGen Loss: {}\tDisc Loss: {}" "\tPSNR: {}\tTime Taken: {} sec".format( @@ -312,7 +310,7 @@ class Trainer(object): disc_metric.result(), psnr_metric.result(), time.time() - start)) - # if psnr_metric.result() > last_psnr: - last_psnr = psnr_metric.result() - utils.save_checkpoint(checkpoint, "phase_2", self.model_dir) + if psnr_metric.result() > last_psnr: + last_psnr = psnr_metric.result() + utils.save_checkpoint(checkpoint, "phase_2", self.model_dir) start = time.time()