From 078d3c01174f377cf9aa3a81582e93675bf3376c Mon Sep 17 00:00:00 2001 From: tomrink <rink@ssec.wisc.edu> Date: Fri, 2 Dec 2022 11:47:52 -0600 Subject: [PATCH] snapshot... --- modules/deeplearning/icing_fcn.py | 16 ++++++++-------- 1 file changed, 8 insertions(+), 8 deletions(-) diff --git a/modules/deeplearning/icing_fcn.py b/modules/deeplearning/icing_fcn.py index f00eac31..be333c98 100644 --- a/modules/deeplearning/icing_fcn.py +++ b/modules/deeplearning/icing_fcn.py @@ -20,8 +20,8 @@ if NumClasses == 2: else: NumLogits = NumClasses -BATCH_SIZE = 256 -NUM_EPOCHS = 60 +BATCH_SIZE = 128 +NUM_EPOCHS = 50 TRACK_MOVING_AVERAGE = False EARLY_STOP = True @@ -584,18 +584,18 @@ class IcingIntensityFCN: # activation = tf.nn.elu activation = tf.nn.leaky_relu - num_filters = len(self.train_params) * 16 + num_filters = len(self.train_params) * 4 input_2d = self.inputs[0] if NOISE_TRAINING: conv = tf.keras.layers.GaussianNoise(stddev=NOISE_STDDEV)(input_2d) - conv = tf.keras.layers.Conv2D(num_filters, kernel_size=5, strides=1, padding=padding, activation=activation)(conv) + conv = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=activation)(conv) print(conv.shape) skip = conv - conv = tf.keras.layers.Conv2D(num_filters, kernel_size=5, strides=1, padding=padding, activation=activation)(conv) + conv = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=activation)(conv) conv = tf.keras.layers.MaxPool2D(padding=padding)(conv) if do_drop_out: conv = tf.keras.layers.Dropout(drop_rate)(conv) @@ -694,11 +694,11 @@ class IcingIntensityFCN: conv = build_residual_block_1x1(conv, num_filters, activation, 'Residual_Block_2', padding=padding) - conv = build_residual_block_1x1(conv, num_filters, activation, 'Residual_Block_3', padding=padding) + # conv = build_residual_block_1x1(conv, num_filters, activation, 'Residual_Block_3', padding=padding) - conv = build_residual_block_1x1(conv, num_filters, activation, 'Residual_Block_4', padding=padding) + # conv = build_residual_block_1x1(conv, num_filters, activation, 'Residual_Block_4', padding=padding) - conv = build_residual_block_1x1(conv, num_filters, activation, 'Residual_Block_5', padding=padding) + # conv = build_residual_block_1x1(conv, num_filters, activation, 'Residual_Block_5', padding=padding) print(conv.shape) -- GitLab