diff --git a/modules/deeplearning/icing_fcn.py b/modules/deeplearning/icing_fcn.py index f00eac311a7d702e5671744c4be268b8eb9fab48..be333c98a6fe426f342459d87a12b044a9269da2 100644 --- a/modules/deeplearning/icing_fcn.py +++ b/modules/deeplearning/icing_fcn.py @@ -20,8 +20,8 @@ if NumClasses == 2: else: NumLogits = NumClasses -BATCH_SIZE = 256 -NUM_EPOCHS = 60 +BATCH_SIZE = 128 +NUM_EPOCHS = 50 TRACK_MOVING_AVERAGE = False EARLY_STOP = True @@ -584,18 +584,18 @@ class IcingIntensityFCN: # activation = tf.nn.elu activation = tf.nn.leaky_relu - num_filters = len(self.train_params) * 16 + num_filters = len(self.train_params) * 4 input_2d = self.inputs[0] if NOISE_TRAINING: conv = tf.keras.layers.GaussianNoise(stddev=NOISE_STDDEV)(input_2d) - conv = tf.keras.layers.Conv2D(num_filters, kernel_size=5, strides=1, padding=padding, activation=activation)(conv) + conv = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=activation)(conv) print(conv.shape) skip = conv - conv = tf.keras.layers.Conv2D(num_filters, kernel_size=5, strides=1, padding=padding, activation=activation)(conv) + conv = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=activation)(conv) conv = tf.keras.layers.MaxPool2D(padding=padding)(conv) if do_drop_out: conv = tf.keras.layers.Dropout(drop_rate)(conv) @@ -694,11 +694,11 @@ class IcingIntensityFCN: conv = build_residual_block_1x1(conv, num_filters, activation, 'Residual_Block_2', padding=padding) - conv = build_residual_block_1x1(conv, num_filters, activation, 'Residual_Block_3', padding=padding) + # conv = build_residual_block_1x1(conv, num_filters, activation, 'Residual_Block_3', padding=padding) - conv = build_residual_block_1x1(conv, num_filters, activation, 'Residual_Block_4', padding=padding) + # conv = build_residual_block_1x1(conv, num_filters, activation, 'Residual_Block_4', padding=padding) - conv = build_residual_block_1x1(conv, num_filters, activation, 'Residual_Block_5', padding=padding) + # conv = build_residual_block_1x1(conv, num_filters, activation, 'Residual_Block_5', padding=padding) print(conv.shape)