diff --git a/modules/GSOC/E2_ESRGAN/lib/train.py b/modules/GSOC/E2_ESRGAN/lib/train.py index 7d234fcd03c2672bfff325c857eae48b086a22d6..f8ff41507c4f273ad0bffe8554ebf4804c835f5f 100644 --- a/modules/GSOC/E2_ESRGAN/lib/train.py +++ b/modules/GSOC/E2_ESRGAN/lib/train.py @@ -92,14 +92,15 @@ class Trainer(object): logging.debug("Starting Distributed Step") with tf.GradientTape() as tape: fake = generator.unsigned_call(image_lr) - loss = utils.pixel_loss(image_hr, fake) * (1.0 / self.batch_size) - # loss = utils.pixel_loss_mse(image_hr, fake) * (1.0 / self.batch_size) + loss_mae = utils.pixel_loss(image_hr, fake) * (1.0 / self.batch_size) + # loss_mse = utils.pixel_loss_mse(image_hr, fake) * (1.0 / self.batch_size) + loss = loss_mae + mean_loss = metric(loss_mae) psnr_metric(tf.reduce_mean(tf.image.psnr(fake, image_hr, max_val=PSNR_MAX))) # gen_vars = list(set(generator.trainable_variables)) gen_vars = generator.trainable_variables gradient = tape.gradient(loss, gen_vars) G_optimizer.apply_gradients(zip(gradient, gen_vars)) - mean_loss = metric(loss) logging.debug("Ending Distributed Step") return tf.cast(G_optimizer.iterations, tf.float32)