diff --git a/modules/deeplearning/icing_cnn.py b/modules/deeplearning/icing_cnn.py index 5160369a83508efe0d1d8938540554977c951aba..db717c416ba1dbeaafcf6222e45a7736811af678 100644 --- a/modules/deeplearning/icing_cnn.py +++ b/modules/deeplearning/icing_cnn.py @@ -60,12 +60,12 @@ train_params_l2 = ['cld_height_acha', 'cld_geo_thick', 'cld_temp_acha', 'cld_pre ## 'cld_emiss_acha', 'conv_cloud_fraction', 'cld_reff_dcomp', 'cld_opd_dcomp', 'cld_cwp_dcomp', 'iwc_dcomp', 'lwc_dcomp'] 'cld_emiss_acha', 'conv_cloud_fraction', 'cld_reff_dcomp', 'cld_opd_dcomp', 'iwc_dcomp', 'lwc_dcomp'] # -- DAY L1B -------------------------------- -# train_params_l1b = ['temp_10_4um_nom', 'temp_11_0um_nom', 'temp_12_0um_nom', 'temp_13_3um_nom', 'temp_3_75um_nom', -# 'temp_6_2um_nom', 'temp_6_7um_nom', 'temp_7_3um_nom', 'temp_8_5um_nom', 'temp_9_7um_nom', -# 'refl_0_47um_nom', 'refl_0_65um_nom', 'refl_0_86um_nom', 'refl_1_38um_nom', 'refl_1_60um_nom'] -# -- NIGHT L1B ------------------------------- train_params_l1b = ['temp_10_4um_nom', 'temp_11_0um_nom', 'temp_12_0um_nom', 'temp_13_3um_nom', 'temp_3_75um_nom', - 'temp_6_2um_nom', 'temp_6_7um_nom', 'temp_7_3um_nom', 'temp_8_5um_nom', 'temp_9_7um_nom'] + 'temp_6_2um_nom', 'temp_6_7um_nom', 'temp_7_3um_nom', 'temp_8_5um_nom', 'temp_9_7um_nom', + 'refl_0_47um_nom', 'refl_0_65um_nom', 'refl_0_86um_nom', 'refl_1_38um_nom', 'refl_1_60um_nom'] +# -- NIGHT L1B ------------------------------- +# train_params_l1b = ['temp_10_4um_nom', 'temp_11_0um_nom', 'temp_12_0um_nom', 'temp_13_3um_nom', 'temp_3_75um_nom', +# 'temp_6_2um_nom', 'temp_6_7um_nom', 'temp_7_3um_nom', 'temp_8_5um_nom', 'temp_9_7um_nom'] # -- DAY LUNAR --------------------- # train_params_l1b = ['cld_height_acha', 'cld_geo_thick', 'cld_temp_acha', 'cld_press_acha', 'supercooled_cloud_fraction', # 'cld_emiss_acha', 'conv_cloud_fraction', 'cld_reff_dcomp', 'cld_opd_dcomp', 'iwc_dcomp', 'lwc_dcomp'] @@ -495,8 +495,7 @@ class IcingIntensityNN: activation = tf.nn.leaky_relu momentum = 0.99 - num_filters = 16 - # num_filters = 30 + num_filters = len(train_params) * 2 conv = tf.keras.layers.Conv2D(num_filters, 5, strides=[1, 1], padding=padding, activation=activation)(self.inputs[0]) conv = tf.keras.layers.MaxPool2D(padding=padding)(conv)