diff --git a/modules/deeplearning/cloud_fraction_fcn_abi_hkm_refl.py b/modules/deeplearning/cloud_fraction_fcn_abi_hkm_refl.py
index 9f4a4c10f2653c95970d762d2150e5c0be35791a..65fcd44bc55830ef92dc85da22a0673207a4a65c 100644
--- a/modules/deeplearning/cloud_fraction_fcn_abi_hkm_refl.py
+++ b/modules/deeplearning/cloud_fraction_fcn_abi_hkm_refl.py
@@ -530,7 +530,7 @@ class SRCNN:
         conv_hkm = conv_hkm_b = tf.keras.layers.Conv2D(num_filters, kernel_size=KERNEL_SIZE, kernel_initializer='he_uniform', activation=activation, padding='VALID')(input_hkm_2d)
         print(conv_hkm.shape)
 
-        num_filters_hkm = 32
+        num_filters_hkm = 8
         conv_hkm = build_conv2d_block(conv_hkm, num_filters_hkm, activation, 'Conv2D_1')
         num_filters_hkm *= 2
         conv_hkm = build_conv2d_block(conv_hkm, num_filters_hkm, activation, 'Conv2D_2')
@@ -549,7 +549,7 @@ class SRCNN:
 
         conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_3', kernel_size=KERNEL_SIZE, scale=scale)
 
-        #conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_4', kernel_size=KERNEL_SIZE, scale=scale)
+        conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_4', kernel_size=KERNEL_SIZE, scale=scale)
 
         #conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_5', kernel_size=KERNEL_SIZE, scale=scale)