diff --git a/modules/deeplearning/srcnn_l1b_l2.py b/modules/deeplearning/srcnn_l1b_l2.py index 682c86bac9399dea471a4657f836dba3a4576b7c..8c989a17c557fa94f956cbbf740c7a56cb834834 100644 --- a/modules/deeplearning/srcnn_l1b_l2.py +++ b/modules/deeplearning/srcnn_l1b_l2.py @@ -711,32 +711,23 @@ def run_restore_static(directory, ckpt_dir): def run_evaluate_static(in_file, out_file, ckpt_dir): h5f = h5py.File(in_file, 'r') grd_a = get_grid_values_all(h5f, 'temp_11_0um_nom') - grd_a = grd_a[2432:4032, 2432:4032] - grd_a = grd_a[::2, ::2] - - grd_b = get_grid_values_all(h5f, 'refl_0_65um_nom') - grd_b = grd_b[2432:4032, 2432:4032] - - grd_c = get_grid_values_all(h5f, label_param) - grd_c = grd_c[2432:4032, 2432:4032] - grd_c = grd_c[::2, ::2] - - leny, lenx = grd_a.shape - x = np.arange(lenx) - y = np.arange(leny) - x_up = np.arange(0, lenx, 0.5) - y_up = np.arange(0, leny, 0.5) - + grd_a = grd_a[2432:2944, 2432:2944] + grd_a = grd_a[slc_y_2, slc_x_2] grd_a = normalize(grd_a, 'temp_11_0um_nom', mean_std_dct) - grd_a = resample_2d_linear_one(x, y, grd_a, x_up, y_up) + grd_a = resample_2d_linear_one(x_2, y_2, grd_a, t, s) + grd_b = get_grid_values_all(h5f, 'refl_0_65um_nom') + grd_b = grd_b[2432:2944, 2432:2944] + grd_b = grd_b[slc_y_2, slc_x_2] grd_b = normalize(grd_b, 'refl_0_65um_nom', mean_std_dct) + grd_b = resample_2d_linear_one(x_2, y_2, grd_b, t, s) - if label_param == 'cloud_fraction': - grd_c = np.where(np.isnan(grd_c), 0, grd_c) - else: + grd_c = get_grid_values_all(h5f, label_param) + grd_c = grd_c[2432:2944, 2432:2944] + grd_c = grd_c[slc_y_2, slc_x_2] + if label_param != 'cloud_fraction': grd_c = normalize(grd_c, label_param, mean_std_dct) - grd_c = resample_2d_linear_one(x, y, grd_c, x_up, y_up) + grd_c = resample_2d_linear_one(x_2, y_2, grd_c, t, s) data = np.stack([grd_a, grd_b, grd_c], axis=2) data = np.expand_dims(data, axis=0)