From 044c890d58c5d2a9e2b1f9074ccf02ff7440881d Mon Sep 17 00:00:00 2001 From: tomrink <rink@ssec.wisc.edu> Date: Thu, 18 Aug 2022 11:26:26 -0500 Subject: [PATCH] snapshot... --- modules/deeplearning/icing_fcn.py | 36 ++++++++++++++++++++----------- 1 file changed, 23 insertions(+), 13 deletions(-) diff --git a/modules/deeplearning/icing_fcn.py b/modules/deeplearning/icing_fcn.py index 6ad32f0b..1364b5c7 100644 --- a/modules/deeplearning/icing_fcn.py +++ b/modules/deeplearning/icing_fcn.py @@ -76,19 +76,29 @@ DO_ZERO_OUT = False lunar_map = {'cld_reff_dcomp': 'cld_reff_nlcomp', 'cld_opd_dcomp': 'cld_opd_nlcomp', 'iwc_dcomp': None, 'lwc_dcomp': None} -# def build_residual_block_conv2d(x_in, num_filters, activation, block_name, padding='SAME', drop_rate=0.5, -# do_drop_out=True, do_batch_norm=True): -# conv = tf.keras.layers.Conv2D(num_filters, kernel_size=5, strides=1, padding=padding, activation=activation)(x_in) -# conv = tf.keras.layers.MaxPool2D(padding=padding)(conv) -# conv = tf.keras.layers.BatchNormalization()(conv) -# -# skip = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=None)(skip) -# skip = tf.keras.layers.MaxPool2D(padding=padding)(skip) -# skip = tf.keras.layers.BatchNormalization()(skip) -# -# conv = conv + skip -# conv = tf.keras.layers.LeakyReLU()(conv) -# print(conv.shape) +def build_residual_block_conv2d(x_in, num_filters, activation, padding='SAME', drop_rate=0.5, + do_drop_out=True, do_batch_norm=True): + skip = x_in + + conv = tf.keras.layers.Conv2D(num_filters, kernel_size=5, strides=1, padding=padding, activation=activation)(x_in) + conv = tf.keras.layers.MaxPool2D(padding=padding)(conv) + if do_drop_out: + conv = tf.keras.layers.Dropout(drop_rate)(conv) + if do_batch_norm: + conv = tf.keras.layers.BatchNormalization()(conv) + + skip = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=None)(skip) + skip = tf.keras.layers.MaxPool2D(padding=padding)(skip) + if do_drop_out: + skip = tf.keras.layers.Dropout(drop_rate)(skip) + if do_batch_norm: + skip = tf.keras.layers.BatchNormalization()(skip) + + conv = conv + skip + conv = tf.keras.layers.LeakyReLU()(conv) + print(conv.shape) + + return conv def build_residual_block_1x1(input_layer, num_filters, activation, block_name, padding='SAME', drop_rate=0.5, -- GitLab