diff --git a/modules/deeplearning/srcnn_l1b_l2.py b/modules/deeplearning/srcnn_l1b_l2.py index c8d8d6439961ca486c7a9ba33b673c51db82bab4..7b47664d901d13ed584d5242bcd2b04f0c02a167 100644 --- a/modules/deeplearning/srcnn_l1b_l2.py +++ b/modules/deeplearning/srcnn_l1b_l2.py @@ -106,12 +106,12 @@ y_2 = y_67 def build_residual_conv2d_block(conv, num_filters, block_name, activation=tf.nn.relu, padding='SAME', - kernel_initializer='he_uniform', scale=None, + kernel_initializer='he_uniform', scale=None, kernel_size=3, do_drop_out=True, drop_rate=0.5, do_batch_norm=False): with tf.name_scope(block_name): - skip = tf.keras.layers.Conv2D(num_filters, kernel_size=3, padding=padding, kernel_initializer=kernel_initializer, activation=activation)(conv) - skip = tf.keras.layers.Conv2D(num_filters, kernel_size=3, padding=padding, activation=None)(skip) + skip = tf.keras.layers.Conv2D(num_filters, kernel_size=kernel_size, padding=padding, kernel_initializer=kernel_initializer, activation=activation)(conv) + skip = tf.keras.layers.Conv2D(num_filters, kernel_size=kernel_size, padding=padding, activation=None)(skip) if scale is not None: skip = tf.keras.layers.Lambda(lambda x: x * scale)(skip)