diff --git a/modules/deeplearning/espcn.py b/modules/deeplearning/espcn.py index 69f654a35346c39a309f8b4432ed282633ea8d48..4086e00626256bd63cfb3cb62e6ba8a658618b3c 100644 --- a/modules/deeplearning/espcn.py +++ b/modules/deeplearning/espcn.py @@ -211,12 +211,12 @@ class ESPCN: self.n_chans = 1 - self.X_img = tf.keras.Input(shape=(None, None, self.n_chans)) - # self.X_img = tf.keras.Input(shape=(30, 30, self.n_chans)) + # self.X_img = tf.keras.Input(shape=(None, None, self.n_chans)) + self.X_img = tf.keras.Input(shape=(30, 30, self.n_chans)) self.inputs.append(self.X_img) - self.inputs.append(tf.keras.Input(shape=(None, None, self.n_chans))) - # self.inputs.append(tf.keras.Input(shape=(30, 30, self.n_chans))) + # self.inputs.append(tf.keras.Input(shape=(None, None, self.n_chans))) + self.inputs.append(tf.keras.Input(shape=(30, 30, self.n_chans))) self.DISK_CACHE = False @@ -427,7 +427,7 @@ class ESPCN: conv = tf.keras.layers.BatchNormalization()(conv) print(conv.shape) - conv = tf.keras.layers.Conv2D(num_filters/2, kernel_size=3, strides=1, padding=padding, activation=None)(conv) + conv = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=None)(conv) conv = tf.keras.layers.BatchNormalization()(conv) print(conv.shape) @@ -435,6 +435,10 @@ class ESPCN: conv = tf.keras.layers.LeakyReLU()(conv) print(conv.shape) + conv = tf.keras.layers.Conv2D(num_filters/2, kernel_size=3, strides=1, padding=padding, activation=None)(conv) + conv = tf.keras.layers.BatchNormalization()(conv) + print(conv.shape) + conv = tf.keras.layers.Conv2D(4, kernel_size=3, strides=1, padding=padding, activation=activation)(conv) print(conv.shape)