From 000c93d0d7e20970417fa62d6c40ee8f3e0bb04e Mon Sep 17 00:00:00 2001 From: tomrink <rink@ssec.wisc.edu> Date: Sat, 26 Feb 2022 10:04:20 -0600 Subject: [PATCH] snapshot... --- modules/deeplearning/icing_fcn.py | 48 ++++++++++++++----------------- 1 file changed, 22 insertions(+), 26 deletions(-) diff --git a/modules/deeplearning/icing_fcn.py b/modules/deeplearning/icing_fcn.py index 7aec99f8..cfdee3d6 100644 --- a/modules/deeplearning/icing_fcn.py +++ b/modules/deeplearning/icing_fcn.py @@ -410,21 +410,18 @@ class IcingIntensityFCN: return self.get_in_mem_data_batch(idxs, False) def get_in_mem_data_batch_eval(self, idxs): - # sort these to use as numpy indexing arrays - nd_idxs = np.array(idxs) - nd_idxs = np.sort(nd_idxs) - data = [] for param in self.train_params: - nda = self.data_dct[param][nd_idxs, ] + nda = self.data_dct[param] nda = normalize(nda, param, mean_std_dct) data.append(nda) data = np.stack(data) data = data.astype(np.float32) - data = np.transpose(data, axes=(1, 2, 3, 0)) + data = np.transpose(data, axes=(1, 2, 0)) + data = np.expand_dims(data, axis=0) # TODO: altitude data will be specified by user at run-time - nda = np.zeros([nd_idxs.size]) + nda = np.zeros([data.shape[1]*data.shape[2]]) nda[:] = self.flight_level nda = tf.one_hot(nda, 5).numpy() @@ -470,9 +467,9 @@ class IcingIntensityFCN: indexes = list(indexes) dataset = tf.data.Dataset.from_tensor_slices(indexes) - dataset = dataset.batch(PROC_BATCH_SIZE) + # dataset = dataset.batch(PROC_BATCH_SIZE) dataset = dataset.map(self.data_function_evaluate, num_parallel_calls=8) - dataset = dataset.cache() + # dataset = dataset.cache() self.eval_dataset = dataset def setup_pipeline(self, filename_l1b_trn, filename_l1b_tst, filename_l2_trn, filename_l2_tst, trn_idxs=None, tst_idxs=None, seed=None): @@ -548,9 +545,9 @@ class IcingIntensityFCN: print('num test samples: ', tst_idxs.shape[0]) print('setup_test_pipeline: Done') - def setup_eval_pipeline(self, data_dct, num_tiles): + def setup_eval_pipeline(self, data_dct): self.data_dct = data_dct - idxs = np.arange(num_tiles) + idxs = np.arange(1) self.num_data_samples = idxs.shape[0] self.get_evaluate_dataset(idxs) @@ -973,22 +970,21 @@ class IcingIntensityFCN: self.test_preds = preds - def do_evaluate(self, ckpt_dir=None, prob_thresh=0.5): - - # if ckpt_dir is not None: # if is None, this has been done already - # ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model) - # ckpt_manager = tf.train.CheckpointManager(ckpt, ckpt_dir, max_to_keep=3) - # ckpt.restore(ckpt_manager.latest_checkpoint) + def do_evaluate(self, prob_thresh=0.5): self.reset_test_metrics() pred_s = [] + # for data in self.eval_dataset: + # ds = tf.data.Dataset.from_tensor_slices(data) + # ds = ds.batch(BATCH_SIZE) + # for mini_batch in ds: + # pred = self.model([mini_batch], training=False) + # pred_s.append(pred) for data in self.eval_dataset: - ds = tf.data.Dataset.from_tensor_slices(data) - ds = ds.batch(BATCH_SIZE) - for mini_batch in ds: - pred = self.model([mini_batch], training=False) - pred_s.append(pred) + print(data[0].shape, data[1].shape) + pred = self.model([data]) + print(pred.shape, pred.numpy().min(), pred.numpy().max()) preds = np.concatenate(pred_s) preds = preds[:,0] @@ -1111,8 +1107,8 @@ def run_evaluate_static_avg(data_dct, ll, cc, ckpt_dir_s_path, day_night='DAY', return ice_lons, ice_lats, preds_2d -def run_evaluate_static(data_dct, num_tiles, ckpt_dir_s_path, day_night='DAY', l1b_or_l2='both', prob_thresh=0.5, - flight_levels=[0, 1, 2, 3, 4], use_flight_altitude=False): +def run_evaluate_static_fcn(data_dct, ckpt_dir_s_path, day_night='DAY', l1b_or_l2='both', prob_thresh=0.5, + flight_levels=[0, 1, 2, 3, 4], use_flight_altitude=False): ckpt_dir_s = os.listdir(ckpt_dir_s_path) ckpt_dir = ckpt_dir_s_path + ckpt_dir_s[0] @@ -1124,7 +1120,7 @@ def run_evaluate_static(data_dct, num_tiles, ckpt_dir_s_path, day_night='DAY', l preds_dct = {flvl: None for flvl in flight_levels} nn = IcingIntensityFCN(day_night=day_night, l1b_or_l2=l1b_or_l2, use_flight_altitude=use_flight_altitude) - nn.num_data_samples = num_tiles + nn.num_data_samples = 1 nn.build_model() nn.build_training() nn.build_evaluation() @@ -1135,7 +1131,7 @@ def run_evaluate_static(data_dct, num_tiles, ckpt_dir_s_path, day_night='DAY', l for flvl in flight_levels: nn.flight_level = flvl - nn.setup_eval_pipeline(data_dct, num_tiles) + nn.setup_eval_pipeline(data_dct) nn.do_evaluate(ckpt_dir) probs = nn.test_probs -- GitLab