import ruamel_yaml as yml import numpy as np # import xarray as xr from glob import glob import read_data as rd # import scene as scn from tests import CloudTests # import tests # import ocean_day_tests as odt # import restoral # #################################################################### # # TEST CASE # data: _datapath = '/ships19/hercules/pveglio/mvcm_viirs_hires' _fname_mod02 = glob(f'{_datapath}/VNP02MOD.A2022173.1454.001.*.uwssec_bowtie_restored.nc')[0] _fname_mod03 = glob(f'{_datapath}/VNP03MOD.A2022173.1454.001.*.uwssec.nc')[0] _fname_img02 = glob(f'{_datapath}/VNP02IMG.A2022173.1454.001.*.uwssec_bowtie_restored.nc')[0] _fname_img03 = glob(f'{_datapath}/VNP03IMG.A2022173.1454.001.*.uwssec.nc')[0] # thresholds: _threshold_file = '/home/pveglio/mvcm/thresholds.mvcm.snpp.v0.0.1.yaml' # ancillary files: _geos_atm_1 = 'GEOS.fpit.asm.inst3_2d_asm_Nx.GEOS5124.20220622_1200.V01.nc4' _geos_atm_2 = 'GEOS.fpit.asm.inst3_2d_asm_Nx.GEOS5124.20220622_1500.V01.nc4' _geos_land = 'GEOS.fpit.asm.tavg1_2d_lnd_Nx.GEOS5124.20220622_1430.V01.nc4' _geos_ocean = 'GEOS.fpit.asm.tavg1_2d_ocn_Nx.GEOS5124.20220622_1430.V01.nc4' _geos_constants = 'GEOS.fp.asm.const_2d_asm_Nx.00000000_0000.V01.nc4' _ndvi_file = 'NDVI.FM.c004.v2.0.WS.00-04.177.hdf' _sst_file = 'oisst.20220622' _eco_file = 'goge1_2_img.v1' # #################################################################### # def main(*, data_path=_datapath, mod02=_fname_mod02, mod03=_fname_mod03, img02=_fname_img02, img03=_fname_img03, threshold_file=_threshold_file, geos_atm_1=_geos_atm_1, geos_atm_2=_geos_atm_2, geos_land=_geos_land, geos_ocean=_geos_ocean, geos_constants=_geos_constants, ndvi_file=_ndvi_file, sst_file=_sst_file): # datapath = '/ships19/hercules/pveglio/neige_data/snpp_test_input' # fname_l1b = 'VNP02MOD.A2014213.1548.001.2017301015346.uwssec.bowtie_restored_scaled.nc' # fname_geo = 'VNP03MOD.A2014213.1548.001.2017301015705.uwssec.nc' # thresh_file = '/home/pveglio/mvcm_leo/thresholds/new_thresholds.mvcm.snpp.v1.0.0.yaml' file_names = {'MOD02': f'{mod02}', 'MOD03': f'{mod03}', 'IMG02': f'{img02}', 'IMG03': f'{img03}', 'GEOS_atm_1': f'{geos_atm_1}', 'GEOS_atm_2': f'{geos_atm_2}', 'GEOS_land': f'{geos_land}', 'GEOS_ocean': f'{geos_ocean}', 'GEOS_constants': f'{geos_constants}', 'NDVI': f'{ndvi_file}', 'SST': f'{sst_file}', 'ANC_DIR': f'{data_path}/ancillary' } with open(threshold_file) as f: text = f.read() thresholds = yml.safe_load(text) sunglint_angle = thresholds['Sun_Glint']['bounds'][3] viirs_data = rd.get_data(file_names, sunglint_angle) # scene_xr = xr.Dataset() # for s in scn._scene_list: # scene_xr[s] = (('number_of_lines', 'number_of_pixels'), scn.scene_id[s]) # scene_xr['latitude'] = viirs_xr.latitude # scene_xr['longitude'] = viirs_xr.longitude # # viirs_data = xr.Dataset(viirs_xr, coords=scene_xr) # viirs_data.drop_vars(['latitude', 'longitude']) cmin_G1 = np.ones(viirs_data.M01.shape) cmin_G2 = np.ones(viirs_data.M01.shape) cmin_G3 = np.ones(viirs_data.M01.shape) cmin_G4 = np.ones(viirs_data.M01.shape) cmin_G5 = np.ones(viirs_data.M01.shape) # cmin_test = {'Ocean_Day': np.ones(viirs_data.M01.shape), # 'Polar_Ocean_Day': np.ones(viirs_data.M01.shape), # 'Polar_Ocean_Night': np.ones(viirs_data.M01.shape) # } # cmin2 = np.ones(viirs_data.M01.shape) # cmin3 = np.ones(viirs_data.M01.shape) # cmin4 = np.ones(viirs_data.M01.shape) # ------------------- # # ### Testing Setup ### # ------------------- # perform = {'11um BT Test': False, 'CO2 High Clouds Test': False, 'Water Vapor High Clouds Test': False, 'Surface Temperature Test': False, 'SST Test': False, '8.6-11um BT Difference Test': False, '11-12um BTD Thin Cirrus Test': False, '11-4um BT Difference Test': False, '7.3-11um BT Difference Mid-level Clouds': False, 'Water Vapor Cloud Test': False, '11um BT Variability Test': False, '11-4um BTD Oceanic Stratus': False, 'NIR Reflectance Test': True, 'Vis/NIR Ratio Test': False, '1.6um or 2.1um NIR Reflectance Test': False, 'Visible Reflectance Test': False, 'GEMI Test': False, '1.38um High Cloud Test': False, '4-12um BTD Thin Cirrus Test': False } # --------------------- # # ### Group 1 Tests ### # # --------------------- # if perform['11um BT Test'] is True: # 11um BT Test for scene_name in ['Ocean_Day', 'Ocean_Night', 'Polar_Ocean_Day', 'Polar_Ocean_Night']: SceneType = CloudTests(viirs_data, scene_name, thresholds) cmin_G1 = SceneType.single_threshold_test('11um_Test', 'M15', cmin_G1) if perform['CO2 High Clouds Test'] is True: # CO2 High Clouds Test for scene_name in ['Land_Day', 'Land_Night', 'Land_Day_Coast', 'Land_Day_Desert', 'Land_Day_Desert_Coast', 'Ocean_Day', 'Ocean_Night', 'Day_Snow', 'Night_Snow']: SceneType = CloudTests(viirs_data, scene_name, thresholds) cmin_G1 = SceneType.single_threshold_test('CO2_High_Clouds_tests', 'bad_data', cmin_G1) if perform['Water Vapor High Clouds Test'] is True: # Water Vapor High Clouds Test for scene_name in ['Land_Day', 'Land_Night', 'Land_Day_Coast', 'Land_Day_Desert', 'Land_Day_Desert_Coast', 'Ocean_Day', 'Ocean_Night', 'Polar_Day_Land', 'Polar_Night_Land', 'Polar_Day_Coast', 'Polar_Day_Desert', 'Polar_Day_Desert_Coast', 'Polar_Day_Snow', 'Polar_Night_Snow', 'Polar_Ocean_Day', 'Polar_Ocean_Night', 'Day_Snow', 'Night_Snow', 'Antarctic_Day']: SceneType = CloudTests(viirs_data, scene_name, thresholds) cmin_G1 = SceneType.single_threshold_test('Water_Vapor_High_Clouds_tests', 'bad_data', cmin_G1) if perform['Surface Temperature Test'] is True: # Surface Temperature Test # NOTE: this test requires the thresholds to be preprocessed for scene_name in ['Land_Night', 'Polar_Night_Land']: SceneType = CloudTests(viirs_data, scene_name, thresholds) cmin_G1 = SceneType.single_threshold_test('Surface_Temperature_Test', 'M15-M16', cmin_G1) if perform['SST Test'] is True: # SST Test for scene_name in ['Ocean_Day', 'Ocean_Night', 'Polar_Ocean_Day', 'Polar_Ocean_Night']: SceneType = CloudTests(viirs_data, scene_name, thresholds) cmin_G1 = SceneType.single_threshold_test('SST_Test', 'M15-M16', cmin_G1) # --------------------- # # ### Group 2 tests ### # # --------------------- # if perform['8.6-11um BT Difference Test'] is True: # 8.6-11um BT Difference Test for scene_name in ['Ocean_Day', 'Ocean_Night', 'Polar_Ocean_Day', 'Polar_Ocean_Night']: SceneType = CloudTests(viirs_data, scene_name, thresholds) cmin_G2 = SceneType.single_threshold_test('8.6-11um_Test', 'M15-M14', cmin_G2) if perform['11-12um BTD Thin Cirrus Test'] is True: # 11-12um BT BTD Transmissive Cirrus Test # NOTE: some of the tests have some differences in how the thresholds are derived # The commented list scene_name is the complete list, the one currently in use is to test that # the template code works at least with a subset of scenes that have the same way of deriving the # thresholds # for scene_name in ['Land_Day', 'Land_Day_Coast', 'Land_Day_Desert', 'Land_Day_Desert_Coast', # 'Ocean_Day', 'Ocean_Night', 'Polar_Day_Land', 'Polar_Day_Coast', # 'Polar_Day_Desert', 'Polar_Day_Desert_Coast', 'Polar_Day_Snow', 'Polar_Night_Snow', # 'Polar_Ocean_Day', 'Polar_Ocean_Night', 'Day_Snow', 'Night_Snow']: for scene_name in ['Land_Day', 'Land_Day_Coast', 'Land_Day_Desert', 'Land_Day_Desert_Coast', 'Ocean_Day', 'Ocean_Night', 'Polar_Ocean_Day', 'Polar_Ocean_Night']: SceneType = CloudTests(viirs_data, scene_name, thresholds) cmin_G2 = SceneType.single_threshold_test('11-12um_Cirrus_Test', 'M15-M16', cmin_G2) if perform['11-4um BT Difference Test'] is True: # 11-4um BT Difference Test for scene_name in ['Ocean_Night', 'Polar_Ocean_Night']: pass if perform['7.3-11um BT Difference Mid-level Clouds'] is True: for scene_name in ['Land_Night', 'Polar_Night_Land', 'Polar_Night_Snow', 'Night_Snow']: pass if perform['Water Vapor Cloud Test'] is True: for scene_name in ['Polar_Night_Ocean']: pass if perform['11um BT Variability Test'] is True: for scene_name in ['Polar_Night_Ocean']: pass if perform['11-4um BTD Oceanic Stratus'] is True: # 11-4um BT Difference for oceanic stratus (low emissivity water cloud) Test for scene_name in ['Land_Day', 'Land_Day_Coast', 'Land_Day_Desert', 'Land_Day_Desert_Coast', 'Ocean_Day', 'Ocean_Night', 'Polar_Day_Land', 'Polar_Day_Coast', 'Polar_Day_Desert', 'Polar_Day_Desert_Coast', 'Polar_Day_Snow', 'Polar_Night_Snow', 'Polar_Ocean_Day', 'Polar_Ocean_Night', 'Day_Snow', 'Night_Snow']: SceneType = CloudTests(viirs_data, scene_name, thresholds) cmin_G2 = SceneType.single_threshold_test('11-4um_BTD_Oceanic_Stratus_Test', 'M15-M13', cmin_G2) # --------------------- # # ### Group 3 tests ### # # --------------------- # if perform['NIR Reflectance Test'] is True: for scene_name in ['Ocean_Day', 'Polar_Ocean_Day']: SceneType = CloudTests(viirs_data, scene_name, thresholds) cmin_G3 = SceneType.single_thredhold_test('NIR_Reflectance_Test', 'M07', cmin_G3) if perform['Vis/NIR Ratio Test'] is True: for scene_name in ['Ocean_Day', 'Polar_Ocean_Day']: pass if perform['1.6um or 2.1um NIR Reflectance Test'] is True: for scene_name in ['Ocean_Day', 'Polar_Ocean_Day']: pass if perform['Visible Reflectance Test'] is True: for scene_name in ['Land_Day', 'Land_Day_Coast', 'Land_Day_Desert', 'Land_Day_Desert_Coast', 'Polar_Day_Land', 'Polar_Day_Coast', 'Polar_Day_Desert', 'Polar_Day_Desert_Coast']: pass if perform['GEMI Test'] is True: for scene_name in ['Land_Day_Desert', 'Polar_Day_Desert']: pass # --------------------- # # ### Group 4 tests ### # # --------------------- # if perform['1.38um High Cloud Test'] is True: # for scene_name in ['Land_Day', 'Land_Day_Coast', 'Land_Day_Desert', 'Land_Day_Desert_Coast', # 'Ocean_Day', 'Polar_Day_Land', 'Polar_Day_Coast', 'Polar_Day_Desert', # 'Polar_Day_Desert_Coast', 'Polar_Ocean_Day', 'Day_Snow']: for scene_name in ['Land_Day', 'Land_Day_Coast', 'Land_Day_Desert', 'Land_Day_Desert_Coast', 'Polar_Day_Land', 'Polar_Day_Coast', 'Polar_Day_Desert', 'Polar_Day_Desert_Coast', 'Day_Snow']: # The current loop is missing Ocean_Day and Polar_Ocean_Day because they need some # preprocessing to compute the thresholds. Once things are implemented I can use the commented # loop SceneType = CloudTests(viirs_data, scene_name, thresholds) cmin_G4 = SceneType.single_threshold_test('1.38um_High_Cloud_Test', 'M09', cmin_G4) # --------------------- # # ### Group 5 tests ### # # --------------------- # if perform['4-12um BTD Thin Cirrus Test'] is True: for scene_name in ['Land_Night', 'Polar_Night_Land', 'Polar_Night_Snow', 'Night_Snow']: pass cmin_total = cmin_G1 * cmin_G2 * cmin_G3 * cmin_G4 * cmin_G5 return cmin_total ''' Land_Day = CloudTests(viirs_data, 'Land_Day', thresholds) Land_Night = CloudTests(viirs_data, 'Land_Night', thresholds) Land_Day_Coast = CloudTests(viirs_data, 'Land_Day_Coast', thresholds) Land_Day_Desert = CloudTests(viirs_data, 'Land_Day_Desert', thresholds) Land_Day_Desert_Coast = CloudTests(viirs_data, 'Land_Day_Desert_Coast', thresholds) Ocean_Day = CloudTests(viirs_data, 'Ocean_Day', thresholds) Ocean_Night = CloudTests(viirs_data, 'Ocean_Night', thresholds) Polar_Day_Land = CloudTests(viirs_data, 'Polar_Day_Land', thresholds) Polar_Night_Land = CloudTests(viirs_data, 'Polar_Night_Land', thresholds) Polar_Day_Coast = CloudTests(viirs_data, 'Polar_Day_Coast', thresholds) Polar_Day_Desert = CloudTests(viirs_data, 'Polar_Day_Desert', thresholds) Polar_Day_Desert_Coast = CloudTests(viirs_data, 'Polar_Day_Desert_Coast', thresholds) Polar_Day_Snow = CloudTests(viirs_data, 'Polar_Day_Snow', thresholds) Polar_Night_Snow = CloudTests(viirs_data, 'Polar_Night_Snow', thresholds) Polar_Ocean_Day = CloudTests(viirs_data, 'Polar_Ocean_Day', thresholds) Polar_Ocean_Night = CloudTests(viirs_data, 'Polar_Ocean_Night', thresholds) Day_Snow = CloudTests(viirs_data, 'Day_Snow', thresholds) Night_Snow = CloudTests(viirs_data, 'Night_Snow', thresholds) Antarctic_Day = CloudTests(viirs_data, 'Antarctic_Day', thresholds) # 11um BT Test cmin_G1 = Ocean_Day.single_threshold_test('11um_Test', 'M15', cmin_G1) cmin_G1 = Polar_Ocean_Day.single_threshold_test('11um_Test', 'M15', cmin_G1) cmin_G1 = Polar_Ocean_Night.single_threshold_test('11um_Test', 'M15', cmin_G1) # CO2 High Clouds Test # NOTE: VIIRS doesn't have the MODIS equivalent of B35 so this test is not performed cmin_G1 = Land_Day.single_threshold_test('CO2_High_Clouds_Test', 'bad_data', cmin_G1) cmin_G1 = Land_Night.single_threshold_test('CO2_High_Clouds_Test', 'bad_data', cmin_G1) cmin_G1 = Land_Day_Coast.single_threshold_test('CO2_High_Clouds_Test', 'bad_data', cmin_G1) cmin_G1 = Land_Day_Desert.single_threshold_test('CO2_High_Clouds_Test', 'bad_data', cmin_G1) cmin_G1 = Land_Day_Desert_Coast.single_threshold_test('CO2_High_Clouds_Test', 'bad_data', cmin_G1) cmin_G1 = Ocean_Day.single_threshold_test('CO2_High_Clouds_Test', 'bad_data', cmin_G1) cmin_G1 = Ocean_Night.single_threshold_test('CO2_High_Clouds_Test', 'bad_data', cmin_G1) cmin_G1 = Day_Snow.single_threshold_test('CO2_High_Clouds_Test', 'bad_data', cmin_G1) cmin_G1 = Night_Snow.single_threshold_test('CO2_High_Clouds_Test', 'bad_data', cmin_G1) # Water Vapor High Clouds Test # NOTE: VIIRS doesn't have the MODIS equivalent of B27 so this test is not performed cmin_G1 = Land_Day.single_threshold_test('Water_Vapor_High_Clouds_Test', 'bad_data', cmin_G1) cmin_G1 = Land_Night.single_threshold_test('Water_Vapor_High_Clouds_Test', 'bad_data', cmin_G1) cmin_G1 = Land_Day_Coast.single_threshold_test('Water_Vapor_High_Clouds_Test', 'bad_data', cmin_G1) cmin_G1 = Land_Day_Desert.single_threshold_test('Water_Vapor_High_Clouds_Test', 'bad_data', cmin_G1) cmin_G1 = Land_Day_Desert_Coast.single_threshold_test('Water_Vapor_High_Clouds_Test', 'bad_data', cmin_G1) cmin_G1 = Ocean_Day.single_threshold_test('Water_Vapor_High_Clouds_Test', 'bad_data', cmin_G1) cmin_G1 = Ocean_Night.single_threshold_test('Water_Vapor_High_Clouds_Test', 'bad_data', cmin_G1) cmin_G1 = Polar_Day_Land.single_threshold_test('Water_Vapor_High_Clouds_Test', 'bad_data', cmin_G1) cmin_G1 = Polar_Night_Land.single_threshold_test('Water_Vapor_High_Clouds_Test', 'bad_data', cmin_G1) cmin_G1 = Polar_Day_Coast.single_threshold_test('Water_Vapor_High_Clouds_Test', 'bad_data', cmin_G1) cmin_G1 = Polar_Day_Desert.single_threshold_test('Water_Vapor_High_Clouds_Test', 'bad_data', cmin_G1) cmin_G1 = Polar_Day_Desert_Coast.single_threshold_test('Water_Vapor_High_Clouds_Test', 'bad_data', cmin_G1) cmin_G1 = Polar_Day_Snow.single_threshold_test('Water_Vapor_High_Clouds_Test', 'bad_data', cmin_G1) cmin_G1 = Polar_Night_Snow.single_threshold_test('Water_Vapor_High_Clouds_Test', 'bad_data', cmin_G1) cmin_G1 = Polar_Ocean_Day.single_threshold_test('Water_Vapor_High_Clouds_Test', 'bad_data', cmin_G1) cmin_G1 = Polar_Ocean_Night.single_threshold_test('Water_Vapor_High_Clouds_Test', 'bad_data', cmin_G1) cmin_G1 = Day_Snow.single_threshold_test('Water_Vapor_High_Clouds_Test', 'bad_data', cmin_G1) cmin_G1 = Night_Snow.single_threshold_test('Water_Vapor_High_Clouds_Test', 'bad_data', cmin_G1) cmin_G1 = Antarctic_Day.single_threshold_test('Water_Vapor_High_Clouds_Test', 'bad_data', cmin_G1) # Surface Temperature Test # ## NOTE: This requires some calculations for the thresholds. # Moreover this test is using the 11um - 12um difference instead of a single channel # Also, look at the test carefully for these two cases. Polar_Night_Land uses some hardcoded coeffs # (i.e. *_df1 and *_df2) that might be worth moving in the thresholds file for consistency cmin_G1 = Land_Night.single_threshold_test('Surface_Temperature_Test', 'M15-M16', cmin_G1) cmin_G1 = Polar_Night_Land.single_threshold_test('Surface_Temperature_Test', 'M15-M16', cmin_G1) # SST Test # ## NOTE: This requires some calculations for the thresholds. # Moreover this test is using the 11um - 12um difference instead of a single channel cmin_G1 = Ocean_Day.single_threshold_test('SST_Test', 'M15-M16', cmin_G1) cmin_G1 = Polar_Ocean_Day.single_threshold_test('SST_Test', 'M15-M16', cmin_G1) cmin_G1 = Polar_Ocean_Night.single_threshold_test('SST_Test', 'M15-M16', cmin_G1) # the following test uses a different set of coefficients compared to the others above cmin_G1 = Ocean_Night.single_threshold_test('SST_Test', 'M15-M16', cmin_G1) # 11-8.6um BT Difference Test cmin_G2 = Ocean_Day.single_threshold_test('11-8.6um_Test', 'M15-M14', cmin_G2) cmin_G2 = Ocean_Night.single_threshold_test('11-8.6um_Test', 'M15-M14', cmin_G2) cmin_G2 = Polar_Ocean_Day.single_threshold_test('11-8.6um_Test', 'M15-M14', cmin_G2) cmin_G2 = Polar_Ocean_Night.single_threshold_test('11-8.6um_Test', 'M15-M14', cmin_G2) # 11-12um BT Difference cmin_G1 = Ocean_Day.single_threshold_test('11-12BT_diff', viirs_data.M15.values-viirs_data.M16.values, cmin_G1) Ocean_Night = CloudTests(viirs_data, 'Ocean_Night', thresholds) cmin_G1 = Ocean_Night.single_threshold_test('11um_test', viirs_data.M15.values, cmin_G1) cmin_G1 = Ocean_Night.single_threshold_test('11-12um_diff', viirs_data.M15.values-viirs_data.M16.values, cmin_G1) c = np.ones((9, viirs_data['M01'].shape[0], viirs_data['M01'].shape[1])) cmin1, c[0, :, :], bit1 = odt.simple_test(viirs_data.M15.values, thresholds['Daytime_Ocean']['bt11'], cmin1) cmin1, c[1, :, :], bit2 = odt.sst_test(viirs_data.M15.values, viirs_data.M16.values, viirs_data.sensor_zenith.values, viirs_data.geos_sfct.values, thresholds['Daytime_Ocean']['sst'], cmin1) cmin2, c[2, :, :], bit3 = odt.simple_test(viirs_data.M14.values-viirs_data.M15.values, thresholds['Daytime_Ocean']['diff_11_86um'], cmin2) cmin2, c[3, :, :], bit4 = odt.test_11_12_diff(viirs_data, thresholds['Daytime_Ocean']['diff11_12um'], cmin2) cmin2, c[4, :, :] = odt.test_11_4_diff(viirs_data.M15.values, viirs_data.M12.values, thresholds['Daytime_Ocean']['test11_4lo'], scene_flags, cmin2) cmin3, c[5, :, :] = odt.nir_refl_test(viirs_data.M07.values, thresholds['Daytime_Ocean'], thresholds['Sun_Glint'], viirs_data, cmin3) cmin3, c[6, :, :] = odt.vis_nir_ratio_test(viirs_data.M05.values, viirs_data.M07.values, thresholds, scene_flags, cmin3) cmin3, c[7, :, :] = odt.nir_refl_test(viirs_data.M10.values, thresholds['Daytime_Ocean'], thresholds['Sun_Glint'], viirs_data, cmin3) # # confidence[0, :, :] = tests.test_11um(viirs_data.M15.values, thresholds['Daytime_Ocean']) # confidence[1, :, :] = tests.test_11_4diff(viirs_data.M15.values, viirs_data.M13.values, # thresholds['Daytime_Ocean'], viirs_data, # thresholds['Sun_Glint']['bounds'][3]) # # confidence[2, :, :] = tests.nir_refl_test(viirs_data.M07.values, thresholds['Daytime_Ocean'], # thresholds['Sun_Glint'], viirs_data) # # # Note that here I'm using M05/M07 but the corresponding hi-res channels are I1/I2 # # IMPORTANT: conf_test_dble() needs to be verified. I don't think it's working as intended at the moment # confidence[3, :, :] = tests.vis_nir_ratio_test(viirs_data.M05.values, viirs_data.M07.values, # thresholds['Daytime_Ocean'], thresholds['Sun_Glint']) # # # This test needs to be verified, for the granule I'm running everything is zero # confidence[4, :, :] = tests.test_11um_var(viirs_data.M15.values, thresholds['Nighttime_Ocean'], # thresholds['Daytime_Ocean_Spatial_Variability']) total_bit = bit1 + bit2 + bit4 temp_confidence = cmin1 * cmin2 * cmin3 * cmin4 confidence = cmin1 * cmin2 * cmin3 * cmin4 # idx = np.nonzero((scene_flags['water'] == 1) & (scene_flags['ice'] == 0) & (scene_flags['uniform'] == 1) & # (confidence <= 0.99) & (confidence >= 0.05)) # confidence[idx] = restoral.spatial(viirs_data, thresholds['Sun_Glint'], scene_flags, confidence)[idx] idx = np.nonzero((scene_flags['water'] == 1) & (scene_flags['sunglint'] == 1) & (scene_flags['uniform'] == 1) & (confidence <= 0.95)) confidence[idx] = restoral.sunglint(viirs_data, thresholds['Sun_Glint'], total_bit, temp_confidence)[idx] temp = np.zeros((viirs_data.M01.shape[0], viirs_data.M01.shape[1])) temp[idx] = 1 c[8, :, :] = temp np.savez('test_confidence', confidence=confidence, conf_test=c, lat=viirs_data.latitude.values, lon=viirs_data.longitude.values) return confidence ''' def test_main(): rad1 = [[255, 260, 265, 248, 223], [278, 285, 270, 268, 256], [275, 273, 266, 254, 259]] rad2 = [[270, 273, 271, 268, 265], [277, 286, 275, 277, 269], [280, 281, 272, 270, 267]] thresh_file = '/home/pveglio/mvcm_leo/thresholds/new_thresholds.mvcm.snpp.v1.0.0.yaml' with open(thresh_file) as f: text = f.read() rad1 = np.array(rad1) rad2 = np.array(rad2) confidence = np.zeros((2, rad1.shape[0], rad1.shape[1])) thresholds = yml.safe_load(text) confidence[0, :, :] = tests.test_11um(rad1, thresholds['Daytime_Ocean']) confidence[1, :, :] = tests.test_11_4diff(rad1, rad2, thresholds['Daytime_Ocean']) print(f'Confidence[0,:,:]: \n {confidence[0, :, :]}') print(f'Confidence[1,:,:]: \n {confidence[1, :, :]}') return confidence if __name__ == "__main__": test_main()