import numpy as np _test_rad = np.random.randint(25, size=[6, 8]) # _test_thr = [15, 10, 5, 1, 1] _test_thr = [5, 10, 15, 1, 1] # this function creates a map of sunglint areas, based on the different angles set in the # threshold file. The goal is to create an array of indices that I can use to quickly assign # different coefficients depending on the angle interval. This will be mostly used in the # function get_sunglint_thresholds(). # All of this is because we want to be able to process the whole array, instead of iterating # over all pixels one by one. def sunglint_scene(refang, sunglint_thr): sunglint_flag = np.zeros(refang.shape) sunglint_flag[(refang > sunglint_thr['bounds'][2]) & (refang <= sunglint_thr['bounds'][3])] = 1 sunglint_flag[(refang > sunglint_thr['bounds'][1]) & (refang <= sunglint_thr['bounds'][2])] = 2 sunglint_flag[refang <= sunglint_thr['bounds'][1]] = 3 return sunglint_flag def get_sunglint_thresholds(refang, thresholds, band_n, sunglint_flag, thr): band = f'band{band_n}' sunglint_thr = np.zeros((4, len(refang))) # if refang > thresholds['bounds'][3]: # sunglint = sunglint # # dosgref[2] = hicnf # # dosgref[0] = locnf # # dosgref[1] = mdcnf # # sunglint[3] = doref2[3] # if refang <= thresholds['bounds'][1]: if sunglint_flag == 3: sunglint_thr = np.full((4, len(refang)), thresholds[f'{band}_0deg'].T) # sunglint_thr[:, :] = thresholds[f'{band}_0deg'] else: # if (refang > thresholds['bounds'][1] and refang <= thresholds['bounds'][2]): if sunglint_flag == 2: lo_ang = thresholds['bounds'][1] hi_ang = thresholds['bounds'][2] lo_ang_val = thresholds[f'{band}_10deg'][0] hi_ang_val = thresholds[f'{band}_10deg'][1] power = thresholds[f'{band}_10deg'][3] conf_range = thresholds[f'{band}_10deg'][2] # elif (refang > thresholds['bounds'][2] and refang <= thresholds['bounds'][3]): elif sunglint_flag == 1: lo_ang = thresholds['bounds'][2] hi_ang = thresholds['bounds'][3] lo_ang_val = thresholds[f'{band}_20deg'][0] hi_ang_val = thr[1] power = thresholds[f'{band}_20deg'][3] conf_range = thresholds[f'{band}_20deg'][2] else: raise ValueError("Wrong sunglint flag") a = (refang - lo_ang) / (hi_ang - lo_ang) midpt = lo_ang_val + a*(hi_ang_val - lo_ang_val) sunglint_thr[1, :] = midpt sunglint_thr[2, :] = midpt - conf_range sunglint_thr[0, :] = midpt + conf_range sunglint_thr[3, :] = power return sunglint_thr def conf_test(rad=_test_rad, thr=_test_thr): ''' Assuming a linear function between min and max confidence level, the plot below shows how the confidence (y axis) is computed as function of radiance (x axis). This case illustrates alpha < gamma, obviously in case alpha > gamma, the plot would be flipped. gamma c 1 ________ o | / n | / f | / i | beta / d 1/2 |....../ e | / n | / c | / e 0________/ | alpha --------- radiance ----------> ''' coeff = np.power(2, (thr[3] - 1)) hicut = thr[0] beta = thr[1] locut = thr[2] power = thr[3] confidence = np.zeros(rad.shape) if hicut > locut: gamma = thr[0] alpha = thr[2] flipped = False else: gamma = thr[2] alpha = thr[0] flipped = True # Rad between alpha and beta range_ = 2. * (beta - alpha) s1 = (rad[rad <= beta] - alpha) / range_ if flipped is False: confidence[rad <= beta] = coeff * np.power(s1, power) if flipped is True: confidence[rad <= beta] = 1. - (coeff * np.power(s1, power)) # Rad between beta and gamma range_ = 2. * (beta - gamma) s1 = (rad[rad > beta] - gamma) / range_ if flipped is False: confidence[rad > beta] = 1. - (coeff * np.power(s1, power)) if flipped is True: confidence[rad > beta] = coeff * np.power(s1, power) # Rad outside alpha-gamma interval if flipped is False: confidence[rad > gamma] = 1 confidence[rad < alpha] = 0 if flipped is True: confidence[rad > gamma] = 0 confidence[rad < alpha] = 1 confidence[confidence > 1] = 1 confidence[confidence < 0] = 0 return confidence def conf_test_dble(rad, coeffs): # ''' # gamma1 gamma2 # c 1_______ ________ # o | \ / # n | \ / # f | \ / # i | \ beta1 beta2 / # d 1/2 \....| |...../ # e | \ / # n | \ / # c | \ / # e 0 \_____________/ # | alpha1 alpha2 # --------------------- radiance -------------------------> # ''' hicut = [coeffs[0], coeffs[1]] locut = [coeffs[2], coeffs[3]] midpt = [coeffs[4], coeffs[5]] power = coeffs[6] gamma1 = hicut[0] gamma2 = hicut[1] alpha1 = locut[0] alpha2 = locut[1] beta1 = midpt[0] beta2 = midpt[1] coeff = np.power(2, (power - 1)) radshape = rad.shape rad = rad.reshape((rad.shape[0]*rad.shape[1])) c = np.zeros(rad.shape) # Find if interval between inner cutoffs passes or fails test if (alpha1 - gamma1 > 0): # Value is within range of lower set of limits range_ = 2 * (beta1 - alpha1) s1 = (rad[(rad <= alpha1) & (rad >= beta1)] - alpha1) / range_ c[(rad <= alpha1) & (rad >= beta1)] = coeff * np.power(s1, power) range_ = 2 * (beta1 - gamma1) s1 = (rad[(rad <= alpha1) & (rad < beta1)] - gamma1) / range_ c[(rad <= alpha1) & (rad < beta1)] = coeff * np.power(s1, power) # Value is within range of upper set of limits range_ = 2 * (beta2 - alpha2) s1 = (rad[(rad > alpha1) & (rad <= beta2)] - alpha2) / range_ c[(rad > alpha1) & (rad <= beta2)] = coeff * np.power(s1, power) range_ = 2 * (beta2 - gamma2) s1 = (rad[(rad > alpha1) & (rad > beta2)] - gamma2) / range_ c[(rad > alpha1) & (rad > beta2)] = coeff * np.power(s1, power) # Inner region fails test # Check for value beyond function range c[(rad > alpha1) & (rad < alpha2)] = 0 c[(rad < gamma1) | (rad > gamma2)] = 1 else: # Value is withing range of lower set of limits range_ = 2 * (beta1 - alpha1) s1 = (rad[(rad <= gamma1) & (rad <= beta1)] - alpha1) / range_ c[(rad <= gamma1) & (rad <= beta1)] = coeff * np.power(s1, power) range_ = 2 * (beta1 - gamma1) s1 = (rad[(rad <= gamma1) & (rad > beta1)] - gamma1) / range_ c[(rad <= gamma1) & (rad > beta1)] = coeff * np.power(s1, power) # Value is within range of upper set of limits range_ = 2 * (beta2 - alpha2) s1 = (rad[(rad > gamma1) & (rad >= beta2)] - alpha2) / range_ c[(rad > gamma1) & (rad >= beta2)] = coeff * np.power(s1, power) range_ = 2 * (beta2 - gamma2) s1 = (rad[(rad > gamma1) & (rad < beta2)] - gamma2) / range_ c[(rad > gamma1) & (rad < beta2)] = coeff * np.power(s1, power) # Inner region passes test # Check for value beyond function range c[(rad > gamma1) & (rad < gamma2)] = 1 c[(rad < alpha1) | (rad > alpha2)] = 0 c[c > 1] = 1 c[c < 0] = 0 confidence = c.reshape(radshape) return confidence