import numpy as np import xarray as xr import ancillary_data as anc import utils _dtr = np.pi/180 # this case is written for the 11-12um Cirrus Test for scenes that follow pattern 1 (see note below) def prepare_thresholds(data, thresholds): coeff_values = np.empty((data.M01.shape[0], data.M01.shape[1], 2)) coeff_values[:, :, 0] = np.full(data.M01.shape, thresholds['11-12um_Cirrus_Test']['coeffs'][0]) coeff_values[:, :, 1] = np.full(data.M01.shape, thresholds['11-12um_Cirrus_Test']['coeffs'][1]) cmult_values = np.full(data.M01.shape, thresholds['11-12um_Cirrus_Test']['cmult']) adj_values = np.full(data.M01.shape, thresholds['11-12um_Cirrus_Test']['adj']) thr_dict = {'coeffs': (['number_of_lines', 'number_of_pixels', 'z'], coeff_values), 'cmult': (['number_of_lines', 'number_of_pixels'], cmult_values), 'adj': (['number_of_lines', 'number_of_pixels'], adj_values) } return xr.Dataset(data_vars=thr_dict) def preproc(data, thresholds): cosvza = np.cos(data.sensor_zenith * _dtr) schi = (1/cosvza).where(cosvza > 0, 99.0) schi = schi.values.reshape(np.prod(schi.shape)) m15 = data.M15.values.reshape(np.prod(data.M15.shape)) thr = anc.py_cithr(1, schi, m15) thr = thr.reshape(data.M15.shape) schi = schi.reshape(data.M15.shape) # thr_xr = xr.Dataset(np.full(data.sensor_zenith.shape, thresholds['coeffs']), # dims=('number_of_lines', 'number_of_pixels')) thr_xr = prepare_thresholds(data, thresholds) midpt = thr_xr.coeffs[:, :, 0].where((thr < 0.1) | (np.abs(schi-99) < 0.0001), thr) locut = midpt + (thr_xr.cmult * midpt) hicut = midpt - thr_xr.adj # this below is for the method 2 of computing hicut # hicut = midpt - (thr_xr.adj * midpt) thr_out = xr.DataArray(data=np.dstack((locut, midpt, hicut, np.ones(locut.shape), np.ones(locut.shape))), dims=('number_of_lines', 'number_of_pixels', 'z')) return thr_out # return locut, hicut, midpt def preproc_sst(data, thresholds): m31c = data.M15 - 273.16 m32c = data.M16 - 273.16 m31c_m32c = m31c - m32c sstc = data.geos_sfct - 273.16 cosvza = np.cos(data.sensor_zenith*_dtr) a = thresholds['coeffs'] modsst = 273.16 + a[0] + a[1]*m31c + a[2]*m31c_m32c*sstc + a[3]*m31c_m32c*((1/cosvza) - 1) sfcdif = data.geos_sfct - modsst return sfcdif def preproc_nir(data, thresholds, scene): sza = data.solar_zenith band_n = 2 # NOTE: the visud condition in the C code is equivalent to having sza <= 85 # For the time being the visud filtering is not implemented a = np.array(thresholds[scene]['NIR_Reflectance_Test']['coeffs']) vzcpow = thresholds['VZA_correction']['vzcpow'][0] refang = data.sunglint_angle.values.reshape(np.prod(data.sunglint_angle.shape)) sunglint_thresholds = thresholds['Sun_Glint'] sunglint_flag = utils.sunglint_scene(refang, sunglint_thresholds).reshape(refang.shape) nir_thresh = thresholds[scene]['NIR_Reflectance_Test'] hicut0 = a[0] + a[1]*sza + a[2]*np.power(sza, 2) + a[3]*np.power(sza, 3) hicut0 = (hicut0 * 0.01) + nir_thresh['adj'] hicut0 = (hicut0 + nir_thresh['bias']).values.reshape(refang.shape) midpt0 = hicut0 + (nir_thresh['midpt_coeff'] * nir_thresh['bias']) locut0 = midpt0 + (nir_thresh['locut_coeff'] * nir_thresh['bias']) thr = np.array([locut0, midpt0, hicut0, nir_thresh['thr'][3]*np.ones(refang.shape)]) cosvza = np.cos(data.sensor_zenith*_dtr).values.reshape(refang.shape) corr_thr = np.zeros((4, refang.shape[0])) corr_thr[:3, sunglint_flag == 0] = thr[:3, sunglint_flag == 0] * (1./np.power(cosvza[sunglint_flag == 0], vzcpow)) corr_thr[3, sunglint_flag == 0] = thr[3, sunglint_flag == 0] for flag in range(1, 4): if len(refang[sunglint_flag == flag]) > 0: dosgref = utils.get_sunglint_thresholds(refang, sunglint_thresholds, band_n, flag, thr) corr_thr[:3, sunglint_flag == flag] = dosgref[:3, sunglint_flag == flag] * \ (1./np.power(cosvza[sunglint_flag == flag], vzcpow)) corr_thr[3, sunglint_flag == flag] = dosgref[3, sunglint_flag == flag] corr_thr = np.transpose(corr_thr.reshape((4, sza.shape[0], sza.shape[1])), (1, 2, 0)) return corr_thr # NOTE: 11-12um Cirrus Test # hicut is computed in different ways depending on the scene # 1. midpt - adj # - Land_Day # - Land_Day_Coast # - Land_Day_Desert # - Land_Day_Desert_Coast # - Ocean_Day # - Ocean_Night # - Polar_Day_Ocean # - Polar_Night_Ocean # # 2. midpt - (btd_thr * adj) # - Polar_Day_Land # - Polar_Day_Coast # - Polar_Day_Desert # - Polar_Day_Desert_Coast # - Polar_Day_Snow # # 3. Others # - Land_Night # - Polar_Night_Land # - Polar_Night_Snow # - Day_Snow # - Night_Snow # NOTE: 1.38um High Cloud Test # thresholds are not always computed the same way. In group 1 there's no preprocessing required, # in group 2 some calcuations are needed # 1. # - Land_Day # - Land_Day_Coast # - Land_Day_Desert # - Land_Day_Desert_Coast # - Polar_Day_Land # - Polar_Day_Coast # - Polar_Day_Desert # - Polar_Day_Desert_Coast # - Polar_Day_Snow # - Day_Snow # # 2. # - Ocean_Day # - Polar_Ocean_Day