diff --git a/mvcm/main.py b/mvcm/main.py index ce38334d63ad73cea97209ae6069d0f224209730..db019316868e2286de58e949ffe81abecd558256 100644 --- a/mvcm/main.py +++ b/mvcm/main.py @@ -3,6 +3,9 @@ try: except ImportError: import ruamel_yaml as yml +import functools +import time + import numpy as np import xarray as xr @@ -41,6 +44,19 @@ _eco_file = 'goge1_2_img.v1' # #################################################################### # +def timer(func): + @functools.wraps(func) + def wrapper_timer(*args, **kwargs): + start_time = time.time() + value = func(*args, **kwargs) + end_time = time.time() + run_time = end_time - start_time + print(f'Finished {func.__name__!r} in {run_time:.2f} secs\n') + return value + return wrapper_timer + + +@timer def main(satellite: str = 'snpp', sensor: str = 'viirs', data_path: str = _datapath, @@ -79,6 +95,7 @@ def main(satellite: str = 'snpp', thresholds file name geos_atm_1: str file name of first GEOS5 file for atmospheric parameters + goes_atm_2: str file name of second GEOS5 file for atmospheric parameters geos_land: str @@ -135,6 +152,8 @@ def main(satellite: str = 'snpp', # 'Polar_Day_Land', 'Polar_Day_Coast', 'Polar_Day_Desert', # 'Polar_Day_Desert_Coast', 'Polar_Day_Snow', 'Land_Night', # 'Polar_Night_Land', 'Polar_Night_Snow', 'Day_Snow', 'Night_Snow']: + temp_bit = np.zeros((18, viirs_data.M11.shape[0], viirs_data.M11.shape[1])) + thr_temp = np.ones(viirs_data.M11.shape) * -12345.6 for scene_name in ['Land_Day', 'Land_Day_Coast', 'Land_Day_Desert', 'Land_Day_Desert_Coast', 'Ocean_Day']: print(f'Processing {scene_name}') @@ -160,7 +179,7 @@ def main(satellite: str = 'snpp', cmin_G1, bit['03'] = MyScene.sst_test('M15', 'M16', cmin_G1) cmin_G2, bit['04'] = MyScene.bt_diff_86_11um('M14-M15', cmin_G2) - cmin_G2, bit['05'] = MyScene.test_11_12um_diff('M15-M16', cmin_G2) + cmin_G2, bit['05'], thr_temp = MyScene.test_11_12um_diff('M15-M16', cmin_G2, thr_temp) cmin_G2, bit['06'] = MyScene.variability_11um_test('M15', cmin_G2) cmin_G2, bit['07'] = MyScene.bt_difference_11_4um_test_ocean('M15-M12', cmin_G2) # # cmin_G2, bit['08'] = MyScene.bt_difference_11_4um_test_land('M15-M12', cmin_G2) @@ -181,8 +200,10 @@ def main(satellite: str = 'snpp', cmin_G5, bit['16'] = MyScene.thin_cirrus_4_12um_BTD_test('M13-M16', cmin_G5) # if utils.group_count(bit) != 0: - # cmin_3d[i, :, :] = np.fmin(cmin_temp, - # np.power(cmin_G1 * cmin_G2 * cmin_G3 * cmin_G4 * cmin_G5, 1/utils.group_count(bit))) + ''' + cmin_3d[i, :, :] = np.fmin(cmin_temp, + np.power(cmin_G1 * cmin_G2 * cmin_G3 * cmin_G4 * cmin_G5, 1/utils.group_count(bit))) + ''' cmin = np.power(cmin_G1 * cmin_G2 * cmin_G3 * cmin_G4 * cmin_G5, 1/utils.group_count(bit)) sunglint_bits = bit['01'] * bit['03'] * bit['05'] * bit['15'] @@ -200,37 +221,39 @@ def main(satellite: str = 'snpp', idx = np.nonzero((scene_flags['uniform'] == 1) & (scene_flags['water'] == 1) & (scene_flags['ice'] == 0) & (cmin >= 0.05) & (cmin <= 0.99)) - cmin[idx] = Restore.spatial_variability(cmin)[idx] + cmin[idx] = Restore.spatial_variability(copy(cmin))[idx] idx = np.nonzero((scene_flags['day'] == 1) & (scene_flags['water'] == 1) & (scene_flags['uniform'] == 1) & (scene_flags['sunglint'] == 1) & (cmin <= 0.95)) - # cmin[idx] = Restore.sunglint(sunglint_bits, copy(cmin))[idx] + var_threshold = thresholds['Daytime_Ocean_Spatial_Variability']['var_11um'] + cmin[idx] = Restore.sunglint(sunglint_bits, var_threshold, copy(cmin))[idx] idx = np.nonzero((scene_flags['day'] == 1) & (scene_flags['water'] == 1) & (scene_flags['ice'] == 0)) - # cmin[idx] = Restore.shallow_water(sh_water_bits, cmin)[idx] + cmin[idx] = Restore.shallow_water(sh_water_bits, copy(cmin))[idx] idx = np.nonzero((scene_flags['day'] == 1) & (scene_flags['land'] == 1) & (scene_flags['snow'] == 0) & (scene_flags['ice'] == 0) & (cmin <= 0.95)) - # cmin[idx] = Restore.land(land_bits, cmin)[idx] + cmin[idx] = Restore.land(land_bits, copy(cmin))[idx] idx = np.nonzero((scene_flags['day'] == 1) & (scene_flags['land'] == 1) & (scene_flags['snow'] == 0) & (scene_flags['ice'] == 0) & (scene_flags['coast'] == 1)) - # cmin[idx] = Restore.coast(coast_bits, cmin)[idx] + cmin[idx] = Restore.coast(coast_bits, copy(cmin))[idx] idx = np.nonzero((scene_flags['night'] == 1) & (scene_flags['land'] == 1) & (scene_flags['snow'] == 0) & (scene_flags['ice'] == 0) & (cmin <= 0.95)) - # cmin[idx] = Restore.land_night(land_night_bits, cmin)[idx] + # cmin[idx] = Restore.land_night(land_night_bits, copy(cmin))[idx] cmin_3d[i, :, :] = cmin # cmin_3d[i, :, :] = np.power(cmin_G1 * cmin_G2 * cmin_G3 * cmin_G4 * cmin_G5, 1/utils.group_count(bit)) i += 1 cmin_final = np.min(cmin_3d, axis=0) + # bit['15'] = np.max(temp_bit, axis=0) ''' sunglint_bits = bit['01'] * bit['03'] * bit['05'] * bit['15'] sh_water_bits = {'ir': bit['01'] * bit['05'], @@ -322,8 +345,14 @@ def main(satellite: str = 'snpp', 'data': bit['03']}, 'bit5': {'dims': ('x', 'y'), 'data': bit['05']}, + 'bit10': {'dims': ('x', 'y'), + 'data': bit['10']}, 'bit15': {'dims': ('x', 'y'), 'data': bit['15']}, + 'thr': {'dims': ('x', 'y'), + 'data': thr_temp}, + # 'shallow_water_bits': {'dims': ('x', 'y'), + # 'data': sh_water_bits}, } sf = {k: {'dims': ('x', 'y'), 'data': scene_flags[k]} for k in scene_flags} diff --git a/mvcm/preprocess_thresholds.py b/mvcm/preprocess_thresholds.py index d99fa92fe7a9e293be044d012ef23695aef0e86c..ed78068c5229680584624e9424f98d5599fa32ea 100644 --- a/mvcm/preprocess_thresholds.py +++ b/mvcm/preprocess_thresholds.py @@ -37,31 +37,33 @@ def prepare_11_12um_thresholds(thresholds: np.ndarray, return thr_dict -# function was called preproc def thresholds_11_12um(data: xr.Dataset, thresholds: np.ndarray, scene: str, scene_idx: np.ndarray) -> np.ndarray: cosvza = np.cos(data.sensor_zenith.values[scene_idx].ravel() * _DTR) schi = np.full(cosvza.shape, 99.0) - schi[cosvza > 0] = 1/cosvza + schi[np.abs(cosvza) > 0] = 1.0/cosvza schi = np.array(schi, dtype=np.float32) # this is because the C function expects a float - m15 = data.M15.values[scene_idx].ravel() + m15 = np.array(data.M15.values[scene_idx].ravel(), dtype=np.float32) latitude = data.latitude.values[scene_idx].ravel() thr = anc.py_cithr(1, schi, m15) thr_dict = prepare_11_12um_thresholds(thresholds, m15.shape[0]) midpt = np.full(m15.shape[0], thr) - idx = np.nonzero((thr < 0.1) | (np.abs(schi-99) < 0.0001)) + idx = np.nonzero((thr < 0.1) | (np.abs(schi-99.0) < 0.0001)) midpt[idx] = thr_dict['coeffs'][idx, 0] locut = midpt + (thr_dict['cmult'] * midpt) + if scene in ['Land_Day', 'Land_Day_Coast', 'Land_Day_Desert', 'Land_Day_Desert_Coast', 'Ocean_Day', 'Ocean_Night', 'Polar_Day_Ocean', 'Polar_Night_Ocean']: hicut = midpt - thr_dict['adj'] + elif scene in ['Polar_Day_Land', 'Polar_Day_Coast', 'Polar_Day_Desert', 'Polar_Day_Desert_Coast', 'Polar_Day_Snow']: hicut = midpt - (thr_dict['adj'] * midpt) + elif scene in ['Land_Night', 'Polar_Night_Land', 'Polar_Night_Snow', 'Day_Snow', 'Night_Snow']: _coeffs = {'Land_Night': 0.3, 'Polar_Night_Land': 0.3, 'Polar_Night_Snow': 0.3, 'Day_Snow': 0.0, 'Night_Snow': 0.3} diff --git a/mvcm/utility_functions.py b/mvcm/utility_functions.py index f5091897165fee63eec27cb2a3a8f607e9d04fe6..c53f5a89a772f3e5fe6b168b1ba89a97dfae0e46 100644 --- a/mvcm/utility_functions.py +++ b/mvcm/utility_functions.py @@ -25,7 +25,7 @@ def local_nxn_standard_deviation(arr: np.ndarray, def spatial_var(rad: np.ndarray, threshold: Dict) -> np.ndarray: - """Compute 3x3 spatial variability and returns number of pixels within certain threshold""" + """Compute 3x3 spatial variability and returns fractional number of pixels within the given threshold""" test = sliding_window_view(np.pad(rad, [1, 1], mode='constant'), (3, 3)) - np.expand_dims(rad, (2, 3)) test = np.abs(test.reshape(rad.shape[0], rad.shape[1], 9))