diff --git a/mvcm/main.py b/mvcm/main.py
index ce38334d63ad73cea97209ae6069d0f224209730..db019316868e2286de58e949ffe81abecd558256 100644
--- a/mvcm/main.py
+++ b/mvcm/main.py
@@ -3,6 +3,9 @@ try:
 except ImportError:
     import ruamel_yaml as yml
 
+import functools
+import time
+
 import numpy as np
 import xarray as xr
 
@@ -41,6 +44,19 @@ _eco_file = 'goge1_2_img.v1'
 # #################################################################### #
 
 
+def timer(func):
+    @functools.wraps(func)
+    def wrapper_timer(*args, **kwargs):
+        start_time = time.time()
+        value = func(*args, **kwargs)
+        end_time = time.time()
+        run_time = end_time - start_time
+        print(f'Finished {func.__name__!r} in {run_time:.2f} secs\n')
+        return value
+    return wrapper_timer
+
+
+@timer
 def main(satellite: str = 'snpp',
          sensor: str = 'viirs',
          data_path: str = _datapath,
@@ -79,6 +95,7 @@ def main(satellite: str = 'snpp',
         thresholds file name
     geos_atm_1: str
         file name of first GEOS5 file for atmospheric parameters
+
     goes_atm_2: str
         file name of second GEOS5 file for atmospheric parameters
     geos_land: str
@@ -135,6 +152,8 @@ def main(satellite: str = 'snpp',
     #                    'Polar_Day_Land', 'Polar_Day_Coast', 'Polar_Day_Desert',
     #                    'Polar_Day_Desert_Coast', 'Polar_Day_Snow', 'Land_Night',
     #                    'Polar_Night_Land', 'Polar_Night_Snow', 'Day_Snow', 'Night_Snow']:
+    temp_bit = np.zeros((18, viirs_data.M11.shape[0], viirs_data.M11.shape[1]))
+    thr_temp = np.ones(viirs_data.M11.shape) * -12345.6
     for scene_name in ['Land_Day', 'Land_Day_Coast', 'Land_Day_Desert', 'Land_Day_Desert_Coast',
                        'Ocean_Day']:
         print(f'Processing {scene_name}')
@@ -160,7 +179,7 @@ def main(satellite: str = 'snpp',
         cmin_G1, bit['03'] = MyScene.sst_test('M15', 'M16', cmin_G1)
 
         cmin_G2, bit['04'] = MyScene.bt_diff_86_11um('M14-M15', cmin_G2)
-        cmin_G2, bit['05'] = MyScene.test_11_12um_diff('M15-M16', cmin_G2)
+        cmin_G2, bit['05'], thr_temp = MyScene.test_11_12um_diff('M15-M16', cmin_G2, thr_temp)
         cmin_G2, bit['06'] = MyScene.variability_11um_test('M15', cmin_G2)
         cmin_G2, bit['07'] = MyScene.bt_difference_11_4um_test_ocean('M15-M12', cmin_G2)
         # # cmin_G2, bit['08'] = MyScene.bt_difference_11_4um_test_land('M15-M12', cmin_G2)
@@ -181,8 +200,10 @@ def main(satellite: str = 'snpp',
         cmin_G5, bit['16'] = MyScene.thin_cirrus_4_12um_BTD_test('M13-M16', cmin_G5)
 
         # if utils.group_count(bit) != 0:
-        # cmin_3d[i, :, :] = np.fmin(cmin_temp,
-                                   # np.power(cmin_G1 * cmin_G2 * cmin_G3 * cmin_G4 * cmin_G5, 1/utils.group_count(bit)))
+        '''
+        cmin_3d[i, :, :] = np.fmin(cmin_temp,
+                                   np.power(cmin_G1 * cmin_G2 * cmin_G3 * cmin_G4 * cmin_G5, 1/utils.group_count(bit)))
+        '''
         cmin = np.power(cmin_G1 * cmin_G2 * cmin_G3 * cmin_G4 * cmin_G5, 1/utils.group_count(bit))
 
         sunglint_bits = bit['01'] * bit['03'] * bit['05'] * bit['15']
@@ -200,37 +221,39 @@ def main(satellite: str = 'snpp',
 
         idx = np.nonzero((scene_flags['uniform'] == 1) & (scene_flags['water'] == 1) &
                          (scene_flags['ice'] == 0) & (cmin >= 0.05) & (cmin <= 0.99))
-        cmin[idx] = Restore.spatial_variability(cmin)[idx]
+        cmin[idx] = Restore.spatial_variability(copy(cmin))[idx]
 
         idx = np.nonzero((scene_flags['day'] == 1) & (scene_flags['water'] == 1) &
                          (scene_flags['uniform'] == 1) & (scene_flags['sunglint'] == 1) &
                          (cmin <= 0.95))
-        # cmin[idx] = Restore.sunglint(sunglint_bits, copy(cmin))[idx]
+        var_threshold = thresholds['Daytime_Ocean_Spatial_Variability']['var_11um']
+        cmin[idx] = Restore.sunglint(sunglint_bits, var_threshold, copy(cmin))[idx]
 
         idx = np.nonzero((scene_flags['day'] == 1) & (scene_flags['water'] == 1) &
                          (scene_flags['ice'] == 0))
-        # cmin[idx] = Restore.shallow_water(sh_water_bits, cmin)[idx]
+        cmin[idx] = Restore.shallow_water(sh_water_bits, copy(cmin))[idx]
 
         idx = np.nonzero((scene_flags['day'] == 1) & (scene_flags['land'] == 1) &
                          (scene_flags['snow'] == 0) & (scene_flags['ice'] == 0) &
                          (cmin <= 0.95))
-        # cmin[idx] = Restore.land(land_bits, cmin)[idx]
+        cmin[idx] = Restore.land(land_bits, copy(cmin))[idx]
 
         idx = np.nonzero((scene_flags['day'] == 1) & (scene_flags['land'] == 1) &
                          (scene_flags['snow'] == 0) & (scene_flags['ice'] == 0) &
                          (scene_flags['coast'] == 1))
-        # cmin[idx] = Restore.coast(coast_bits, cmin)[idx]
+        cmin[idx] = Restore.coast(coast_bits, copy(cmin))[idx]
 
         idx = np.nonzero((scene_flags['night'] == 1) & (scene_flags['land'] == 1) &
                          (scene_flags['snow'] == 0) & (scene_flags['ice'] == 0) &
                          (cmin <= 0.95))
-        # cmin[idx] = Restore.land_night(land_night_bits, cmin)[idx]
+        # cmin[idx] = Restore.land_night(land_night_bits, copy(cmin))[idx]
 
         cmin_3d[i, :, :] = cmin
         # cmin_3d[i, :, :] = np.power(cmin_G1 * cmin_G2 * cmin_G3 * cmin_G4 * cmin_G5, 1/utils.group_count(bit))
         i += 1
 
     cmin_final = np.min(cmin_3d, axis=0)
+    # bit['15'] = np.max(temp_bit, axis=0)
     '''
     sunglint_bits = bit['01'] * bit['03'] * bit['05'] * bit['15']
     sh_water_bits = {'ir': bit['01'] * bit['05'],
@@ -322,8 +345,14 @@ def main(satellite: str = 'snpp',
                   'data': bit['03']},
          'bit5': {'dims': ('x', 'y'),
                   'data': bit['05']},
+         'bit10': {'dims': ('x', 'y'),
+                   'data': bit['10']},
          'bit15': {'dims': ('x', 'y'),
                    'data': bit['15']},
+         'thr': {'dims': ('x', 'y'),
+                 'data': thr_temp},
+         # 'shallow_water_bits': {'dims': ('x', 'y'),
+         #                        'data': sh_water_bits},
          }
 
     sf = {k: {'dims': ('x', 'y'), 'data': scene_flags[k]} for k in scene_flags}
diff --git a/mvcm/preprocess_thresholds.py b/mvcm/preprocess_thresholds.py
index d99fa92fe7a9e293be044d012ef23695aef0e86c..ed78068c5229680584624e9424f98d5599fa32ea 100644
--- a/mvcm/preprocess_thresholds.py
+++ b/mvcm/preprocess_thresholds.py
@@ -37,31 +37,33 @@ def prepare_11_12um_thresholds(thresholds: np.ndarray,
     return thr_dict
 
 
-# function was called preproc
 def thresholds_11_12um(data: xr.Dataset,
                        thresholds: np.ndarray,
                        scene: str,
                        scene_idx: np.ndarray) -> np.ndarray:
     cosvza = np.cos(data.sensor_zenith.values[scene_idx].ravel() * _DTR)
     schi = np.full(cosvza.shape, 99.0)
-    schi[cosvza > 0] = 1/cosvza
+    schi[np.abs(cosvza) > 0] = 1.0/cosvza
     schi = np.array(schi, dtype=np.float32)  # this is because the C function expects a float
 
-    m15 = data.M15.values[scene_idx].ravel()
+    m15 = np.array(data.M15.values[scene_idx].ravel(), dtype=np.float32)
     latitude = data.latitude.values[scene_idx].ravel()
     thr = anc.py_cithr(1, schi, m15)
     thr_dict = prepare_11_12um_thresholds(thresholds, m15.shape[0])
 
     midpt = np.full(m15.shape[0], thr)
-    idx = np.nonzero((thr < 0.1) | (np.abs(schi-99) < 0.0001))
+    idx = np.nonzero((thr < 0.1) | (np.abs(schi-99.0) < 0.0001))
     midpt[idx] = thr_dict['coeffs'][idx, 0]
     locut = midpt + (thr_dict['cmult'] * midpt)
+
     if scene in ['Land_Day', 'Land_Day_Coast', 'Land_Day_Desert', 'Land_Day_Desert_Coast',
                  'Ocean_Day', 'Ocean_Night', 'Polar_Day_Ocean', 'Polar_Night_Ocean']:
         hicut = midpt - thr_dict['adj']
+
     elif scene in ['Polar_Day_Land', 'Polar_Day_Coast', 'Polar_Day_Desert',
                    'Polar_Day_Desert_Coast', 'Polar_Day_Snow']:
         hicut = midpt - (thr_dict['adj'] * midpt)
+
     elif scene in ['Land_Night', 'Polar_Night_Land', 'Polar_Night_Snow', 'Day_Snow', 'Night_Snow']:
         _coeffs = {'Land_Night': 0.3, 'Polar_Night_Land': 0.3, 'Polar_Night_Snow': 0.3,
                    'Day_Snow': 0.0, 'Night_Snow': 0.3}
diff --git a/mvcm/utility_functions.py b/mvcm/utility_functions.py
index f5091897165fee63eec27cb2a3a8f607e9d04fe6..c53f5a89a772f3e5fe6b168b1ba89a97dfae0e46 100644
--- a/mvcm/utility_functions.py
+++ b/mvcm/utility_functions.py
@@ -25,7 +25,7 @@ def local_nxn_standard_deviation(arr: np.ndarray,
 
 def spatial_var(rad: np.ndarray,
                 threshold: Dict) -> np.ndarray:
-    """Compute 3x3 spatial variability and returns number of pixels within certain threshold"""
+    """Compute 3x3 spatial variability and returns fractional number of pixels within the given threshold"""
     test = sliding_window_view(np.pad(rad, [1, 1], mode='constant'), (3, 3)) - np.expand_dims(rad, (2, 3))
     test = np.abs(test.reshape(rad.shape[0], rad.shape[1], 9))